Loading…
Intradecadal variations in length of day and their correspondence with geomagnetic jerks
Earth’s core oscillations and magnetic field inside the liquid outer core cannot be observed directly from the surface, we can infer these information from the intradecadal variations in Earth’s rotation rate defined by length of day. However, the fine time-varying characteristics as well as relevan...
Saved in:
Published in: | Nature communications 2020-05, Vol.11 (1), p.2273-2273, Article 2273 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Earth’s core oscillations and magnetic field inside the liquid outer core cannot be observed directly from the surface, we can infer these information from the intradecadal variations in Earth’s rotation rate defined by length of day. However, the fine time-varying characteristics as well as relevant mechanisms of the intradecadal variations are still unclear. Here we report that the intradecadal variations present a significant 8.6-year harmonic component with an unexpected increasing phenomenon, besides a 6-year decreasing oscillation. More importantly, we find that there is a very good correspondence between the extremes of the 8.6-year oscillation with geomagnetic jerks. The fast equatorial waves with subdecadal periods propagating at Earth’s core surface may explain the origin of this 8.6-year oscillation.
Earth rotation variation reflects the physics, dynamics and the magnetic field changes of Earth’s interior. The authors find a significant ~8.6 year periodic increasing oscillation in length of day and its good link to geomagnetic jerks related to Earth’s core oscillations, which may be used to predict the future jerk timings. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-16109-8 |