Loading…

Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures

In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight....

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Switzerland), 2023-09, Vol.8 (5), p.432
Main Authors: Lee, Dong-Hee, Kim, Hwi-Su, Park, Ki-Woong, Park, Hamin, Cho, Won-Ju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-ad70992b7fd2f95775a7a6ddaf5196063d28b5b629b8c5c795179aa827262cfb3
container_end_page
container_issue 5
container_start_page 432
container_title Biomimetics (Basel, Switzerland)
container_volume 8
creator Lee, Dong-Hee
Kim, Hwi-Su
Park, Ki-Woong
Park, Hamin
Cho, Won-Ju
description In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology.
doi_str_mv 10.3390/biomimetics8050432
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf323ef6ba954ffa8b1aec9bfef2cdd9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A766927116</galeid><doaj_id>oai_doaj_org_article_cf323ef6ba954ffa8b1aec9bfef2cdd9</doaj_id><sourcerecordid>A766927116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ad70992b7fd2f95775a7a6ddaf5196063d28b5b629b8c5c795179aa827262cfb3</originalsourceid><addsrcrecordid>eNptkk9vEzEQxVcIRKvSL8BpJS5ctnjttb0-of4JUCkCpJSzNesdJ442drB3W-XOB8dpKiCAfLA1fu9nvfEUxeuaXDCmyLvOhY3b4OhMagknDaPPilPKalZJIdnzP84nxXlKa0JIrQRvGvKyOGFS8qZu2WnxY-ZX4A325WLnYZtx5RWu4N6FmErny-uVG0MCX84GNGMMw27E6gpSNhwqzlQ3YeoGrOaww1jeRfDJpXHvf3DjqvyaPdXClZ_BhwcXMSPBexzKxRgnM04R06vihYUh4fnTflZ8-zC7u_5Uzb98vL2-nFemUXSsoJdEKdpJ21OreM4AEkTfg-U5GhGsp23HO0FV1xpupOK1VAAtlVRQYzt2VtweuH2Atd5Gt4G40wGcfiyEuNQQcwsG1MYyytCKDhRvrIW2qwGN6ixaavpeZdb7A2s7dRvsDfoxwnAEPb7xbqWX4V7XhFORPyAT3j4RYvg-YRr1xiWDwwAew5Q0bYUSNae8zdI3f0nXYYo-9-pRleMRRX6rlpATOG9DftjsofpSiiyTdS2y6uI_qrx63DgTPFqX60cGejCYGFKKaH-FrInez6L-dxbZT_dR1Xg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869262090</pqid></control><display><type>article</type><title>Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Lee, Dong-Hee ; Kim, Hwi-Su ; Park, Ki-Woong ; Park, Hamin ; Cho, Won-Ju</creator><creatorcontrib>Lee, Dong-Hee ; Kim, Hwi-Su ; Park, Ki-Woong ; Park, Hamin ; Cho, Won-Ju</creatorcontrib><description>In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology.</description><identifier>ISSN: 2313-7673</identifier><identifier>EISSN: 2313-7673</identifier><identifier>DOI: 10.3390/biomimetics8050432</identifier><identifier>PMID: 37754183</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Behavior ; Brain ; Chitin ; Chitosan ; chitosan electrolyte ; electric double layers ; Electrolytes ; Etching ; Long term memory ; Nanotechnology ; nanowire channel ; Nanowires ; Neural networks ; neuromorphic computing ; Paired-pulse facilitation ; Pattern recognition ; Physiological aspects ; Scanning electron microscopy ; Synaptic depression ; Synaptic strength ; synaptic transistor ; Thin films ; Transistors</subject><ispartof>Biomimetics (Basel, Switzerland), 2023-09, Vol.8 (5), p.432</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-ad70992b7fd2f95775a7a6ddaf5196063d28b5b629b8c5c795179aa827262cfb3</cites><orcidid>0000-0002-5354-3573 ; 0000-0002-8982-0392 ; 0000-0002-3185-3116 ; 0000-0002-3932-4892 ; 0000-0003-0255-9994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869262090/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869262090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lee, Dong-Hee</creatorcontrib><creatorcontrib>Kim, Hwi-Su</creatorcontrib><creatorcontrib>Park, Ki-Woong</creatorcontrib><creatorcontrib>Park, Hamin</creatorcontrib><creatorcontrib>Cho, Won-Ju</creatorcontrib><title>Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures</title><title>Biomimetics (Basel, Switzerland)</title><description>In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology.</description><subject>Artificial intelligence</subject><subject>Behavior</subject><subject>Brain</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>chitosan electrolyte</subject><subject>electric double layers</subject><subject>Electrolytes</subject><subject>Etching</subject><subject>Long term memory</subject><subject>Nanotechnology</subject><subject>nanowire channel</subject><subject>Nanowires</subject><subject>Neural networks</subject><subject>neuromorphic computing</subject><subject>Paired-pulse facilitation</subject><subject>Pattern recognition</subject><subject>Physiological aspects</subject><subject>Scanning electron microscopy</subject><subject>Synaptic depression</subject><subject>Synaptic strength</subject><subject>synaptic transistor</subject><subject>Thin films</subject><subject>Transistors</subject><issn>2313-7673</issn><issn>2313-7673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk9vEzEQxVcIRKvSL8BpJS5ctnjttb0-of4JUCkCpJSzNesdJ442drB3W-XOB8dpKiCAfLA1fu9nvfEUxeuaXDCmyLvOhY3b4OhMagknDaPPilPKalZJIdnzP84nxXlKa0JIrQRvGvKyOGFS8qZu2WnxY-ZX4A325WLnYZtx5RWu4N6FmErny-uVG0MCX84GNGMMw27E6gpSNhwqzlQ3YeoGrOaww1jeRfDJpXHvf3DjqvyaPdXClZ_BhwcXMSPBexzKxRgnM04R06vihYUh4fnTflZ8-zC7u_5Uzb98vL2-nFemUXSsoJdEKdpJ21OreM4AEkTfg-U5GhGsp23HO0FV1xpupOK1VAAtlVRQYzt2VtweuH2Atd5Gt4G40wGcfiyEuNQQcwsG1MYyytCKDhRvrIW2qwGN6ixaavpeZdb7A2s7dRvsDfoxwnAEPb7xbqWX4V7XhFORPyAT3j4RYvg-YRr1xiWDwwAew5Q0bYUSNae8zdI3f0nXYYo-9-pRleMRRX6rlpATOG9DftjsofpSiiyTdS2y6uI_qrx63DgTPFqX60cGejCYGFKKaH-FrInez6L-dxbZT_dR1Xg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Lee, Dong-Hee</creator><creator>Kim, Hwi-Su</creator><creator>Park, Ki-Woong</creator><creator>Park, Hamin</creator><creator>Cho, Won-Ju</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5354-3573</orcidid><orcidid>https://orcid.org/0000-0002-8982-0392</orcidid><orcidid>https://orcid.org/0000-0002-3185-3116</orcidid><orcidid>https://orcid.org/0000-0002-3932-4892</orcidid><orcidid>https://orcid.org/0000-0003-0255-9994</orcidid></search><sort><creationdate>20230901</creationdate><title>Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures</title><author>Lee, Dong-Hee ; Kim, Hwi-Su ; Park, Ki-Woong ; Park, Hamin ; Cho, Won-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ad70992b7fd2f95775a7a6ddaf5196063d28b5b629b8c5c795179aa827262cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Behavior</topic><topic>Brain</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>chitosan electrolyte</topic><topic>electric double layers</topic><topic>Electrolytes</topic><topic>Etching</topic><topic>Long term memory</topic><topic>Nanotechnology</topic><topic>nanowire channel</topic><topic>Nanowires</topic><topic>Neural networks</topic><topic>neuromorphic computing</topic><topic>Paired-pulse facilitation</topic><topic>Pattern recognition</topic><topic>Physiological aspects</topic><topic>Scanning electron microscopy</topic><topic>Synaptic depression</topic><topic>Synaptic strength</topic><topic>synaptic transistor</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Dong-Hee</creatorcontrib><creatorcontrib>Kim, Hwi-Su</creatorcontrib><creatorcontrib>Park, Ki-Woong</creatorcontrib><creatorcontrib>Park, Hamin</creatorcontrib><creatorcontrib>Cho, Won-Ju</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomimetics (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Dong-Hee</au><au>Kim, Hwi-Su</au><au>Park, Ki-Woong</au><au>Park, Hamin</au><au>Cho, Won-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures</atitle><jtitle>Biomimetics (Basel, Switzerland)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>5</issue><spage>432</spage><pages>432-</pages><issn>2313-7673</issn><eissn>2313-7673</eissn><abstract>In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37754183</pmid><doi>10.3390/biomimetics8050432</doi><orcidid>https://orcid.org/0000-0002-5354-3573</orcidid><orcidid>https://orcid.org/0000-0002-8982-0392</orcidid><orcidid>https://orcid.org/0000-0002-3185-3116</orcidid><orcidid>https://orcid.org/0000-0002-3932-4892</orcidid><orcidid>https://orcid.org/0000-0003-0255-9994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-7673
ispartof Biomimetics (Basel, Switzerland), 2023-09, Vol.8 (5), p.432
issn 2313-7673
2313-7673
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cf323ef6ba954ffa8b1aec9bfef2cdd9
source PubMed Central Free; Publicly Available Content Database
subjects Artificial intelligence
Behavior
Brain
Chitin
Chitosan
chitosan electrolyte
electric double layers
Electrolytes
Etching
Long term memory
Nanotechnology
nanowire channel
Nanowires
Neural networks
neuromorphic computing
Paired-pulse facilitation
Pattern recognition
Physiological aspects
Scanning electron microscopy
Synaptic depression
Synaptic strength
synaptic transistor
Thin films
Transistors
title Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Synaptic%20Behaviors%20in%20Chitosan%20Electrolyte-Based%20Electric-Double-Layer%20Transistors%20with%20Poly-Si%20Nanowire%20Channel%20Structures&rft.jtitle=Biomimetics%20(Basel,%20Switzerland)&rft.au=Lee,%20Dong-Hee&rft.date=2023-09-01&rft.volume=8&rft.issue=5&rft.spage=432&rft.pages=432-&rft.issn=2313-7673&rft.eissn=2313-7673&rft_id=info:doi/10.3390/biomimetics8050432&rft_dat=%3Cgale_doaj_%3EA766927116%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-ad70992b7fd2f95775a7a6ddaf5196063d28b5b629b8c5c795179aa827262cfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869262090&rft_id=info:pmid/37754183&rft_galeid=A766927116&rfr_iscdi=true