Loading…
Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana
Understanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same famil...
Saved in:
Published in: | Nature communications 2021-11, Vol.12 (1), p.6549-6549, Article 6549 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93 |
container_end_page | 6549 |
container_issue | 1 |
container_start_page | 6549 |
container_title | Nature communications |
container_volume | 12 |
creator | Sielemann, Janik Wulf, Donat Schmidt, Romy Bräutigam, Andrea |
description | Understanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same family share similar DNA-binding motifs. Traditionally, these motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly and combinational to binding, machine learning approaches ought to be able to better predict transcription factor binding. Here we show that a random forest machine learning approach, which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested
Arabidopsis thaliana
transcription factors and improves the resolution of differential binding by transcription factor family members which share the same binding motif. We observed that DNA shape features were individually weighted for each transcription factor, even if they shared the same binding sequence.
Methods to predict transcription factor binding sites typically focus on sequence motifs without considering DNA shape. Here the authors use a random forest machine learning approach that incorporates DNA shape and improves binding site prediction for
Arabidopsis thaliana
transcription factors. |
doi_str_mv | 10.1038/s41467-021-26819-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf39f456ff7a42b1a4a99eb3f1b5ea9d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf39f456ff7a42b1a4a99eb3f1b5ea9d</doaj_id><sourcerecordid>2596809864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltiwCdiOL_EGaVRulUawgbV17NgZjzJ2sDNIfXs8TSktC7yxdc7v71yb5iXBbwnu-neFESZkiylpqeiJaumT5pxiRloiaff0wfusuSxlj-vpFOkZe96cdUxKqpg6b_bbZGFCH75uUNnB7FAoCNDoosvVPOcQbZgnh5JHS4ZYbA7zElJEHuySMjIhDiGOqMzOBh9sWG5QiGiTwYQhzaXilh1MASK8aJ55mIq7vLsvmh-fPn6_-tJuv32-vtpsWyuwWFrDPe9gwETJgQ-SsF4N3AnZ04FRClQJJo2izGDppfPQcQZKEOi5UqZ6uovmeuUOCfa6lnCAfKMTBH1rSHnUkJdgJ6et75RnXHgvgVFDoKKUM50nhjtQQ2W9X1nz0RzcYF2sXZgeQR97YtjpMf3SNRtcZ1MBb-4AOf08urLoQyjWTRNEl45FU64kx7hXokpf_yPdp2OOtVUnleix6gWrKrqqbE6lZOfvkyFYnzZDr5uha3R9uxma1k-vHpZx_-XPHlRBtwrKaeSjy39j_wf7G5ukxKk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596809864</pqid></control><display><type>article</type><title>Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Sielemann, Janik ; Wulf, Donat ; Schmidt, Romy ; Bräutigam, Andrea</creator><creatorcontrib>Sielemann, Janik ; Wulf, Donat ; Schmidt, Romy ; Bräutigam, Andrea</creatorcontrib><description>Understanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same family share similar DNA-binding motifs. Traditionally, these motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly and combinational to binding, machine learning approaches ought to be able to better predict transcription factor binding. Here we show that a random forest machine learning approach, which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested
Arabidopsis thaliana
transcription factors and improves the resolution of differential binding by transcription factor family members which share the same binding motif. We observed that DNA shape features were individually weighted for each transcription factor, even if they shared the same binding sequence.
Methods to predict transcription factor binding sites typically focus on sequence motifs without considering DNA shape. Here the authors use a random forest machine learning approach that incorporates DNA shape and improves binding site prediction for
Arabidopsis thaliana
transcription factors.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-26819-2</identifier><identifier>PMID: 34772949</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2114 ; Amino acid sequence ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Binding Sites ; Computational Biology ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - metabolism ; Gene expression ; Humanities and Social Sciences ; Learning algorithms ; Machine learning ; multidisciplinary ; Nucleotide sequence ; Protein Binding ; Regulatory sequences ; Science ; Science (multidisciplinary) ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature communications, 2021-11, Vol.12 (1), p.6549-6549, Article 6549</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93</citedby><cites>FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93</cites><orcidid>0000-0003-3970-9271 ; 0000-0002-3032-1628 ; 0000-0002-3395-0673 ; 0000-0002-5309-0527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596809864/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596809864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34772949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sielemann, Janik</creatorcontrib><creatorcontrib>Wulf, Donat</creatorcontrib><creatorcontrib>Schmidt, Romy</creatorcontrib><creatorcontrib>Bräutigam, Andrea</creatorcontrib><title>Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Understanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same family share similar DNA-binding motifs. Traditionally, these motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly and combinational to binding, machine learning approaches ought to be able to better predict transcription factor binding. Here we show that a random forest machine learning approach, which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested
Arabidopsis thaliana
transcription factors and improves the resolution of differential binding by transcription factor family members which share the same binding motif. We observed that DNA shape features were individually weighted for each transcription factor, even if they shared the same binding sequence.
Methods to predict transcription factor binding sites typically focus on sequence motifs without considering DNA shape. Here the authors use a random forest machine learning approach that incorporates DNA shape and improves binding site prediction for
Arabidopsis thaliana
transcription factors.</description><subject>631/114/1305</subject><subject>631/114/2114</subject><subject>Amino acid sequence</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Binding Sites</subject><subject>Computational Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Nucleotide sequence</subject><subject>Protein Binding</subject><subject>Regulatory sequences</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltiwCdiOL_EGaVRulUawgbV17NgZjzJ2sDNIfXs8TSktC7yxdc7v71yb5iXBbwnu-neFESZkiylpqeiJaumT5pxiRloiaff0wfusuSxlj-vpFOkZe96cdUxKqpg6b_bbZGFCH75uUNnB7FAoCNDoosvVPOcQbZgnh5JHS4ZYbA7zElJEHuySMjIhDiGOqMzOBh9sWG5QiGiTwYQhzaXilh1MASK8aJ55mIq7vLsvmh-fPn6_-tJuv32-vtpsWyuwWFrDPe9gwETJgQ-SsF4N3AnZ04FRClQJJo2izGDppfPQcQZKEOi5UqZ6uovmeuUOCfa6lnCAfKMTBH1rSHnUkJdgJ6et75RnXHgvgVFDoKKUM50nhjtQQ2W9X1nz0RzcYF2sXZgeQR97YtjpMf3SNRtcZ1MBb-4AOf08urLoQyjWTRNEl45FU64kx7hXokpf_yPdp2OOtVUnleix6gWrKrqqbE6lZOfvkyFYnzZDr5uha3R9uxma1k-vHpZx_-XPHlRBtwrKaeSjy39j_wf7G5ukxKk</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Sielemann, Janik</creator><creator>Wulf, Donat</creator><creator>Schmidt, Romy</creator><creator>Bräutigam, Andrea</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3970-9271</orcidid><orcidid>https://orcid.org/0000-0002-3032-1628</orcidid><orcidid>https://orcid.org/0000-0002-3395-0673</orcidid><orcidid>https://orcid.org/0000-0002-5309-0527</orcidid></search><sort><creationdate>20211112</creationdate><title>Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana</title><author>Sielemann, Janik ; Wulf, Donat ; Schmidt, Romy ; Bräutigam, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/1305</topic><topic>631/114/2114</topic><topic>Amino acid sequence</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Binding Sites</topic><topic>Computational Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Nucleotide sequence</topic><topic>Protein Binding</topic><topic>Regulatory sequences</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sielemann, Janik</creatorcontrib><creatorcontrib>Wulf, Donat</creatorcontrib><creatorcontrib>Schmidt, Romy</creatorcontrib><creatorcontrib>Bräutigam, Andrea</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sielemann, Janik</au><au>Wulf, Donat</au><au>Schmidt, Romy</au><au>Bräutigam, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-11-12</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>6549</spage><epage>6549</epage><pages>6549-6549</pages><artnum>6549</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Understanding gene expression will require understanding where regulatory factors bind genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not predictive, since a genome contains many more binding sites than are actually bound and transcription factors of the same family share similar DNA-binding motifs. Traditionally, these motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly and combinational to binding, machine learning approaches ought to be able to better predict transcription factor binding. Here we show that a random forest machine learning approach, which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested
Arabidopsis thaliana
transcription factors and improves the resolution of differential binding by transcription factor family members which share the same binding motif. We observed that DNA shape features were individually weighted for each transcription factor, even if they shared the same binding sequence.
Methods to predict transcription factor binding sites typically focus on sequence motifs without considering DNA shape. Here the authors use a random forest machine learning approach that incorporates DNA shape and improves binding site prediction for
Arabidopsis thaliana
transcription factors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34772949</pmid><doi>10.1038/s41467-021-26819-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3970-9271</orcidid><orcidid>https://orcid.org/0000-0002-3032-1628</orcidid><orcidid>https://orcid.org/0000-0002-3395-0673</orcidid><orcidid>https://orcid.org/0000-0002-5309-0527</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-11, Vol.12 (1), p.6549-6549, Article 6549 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf39f456ff7a42b1a4a99eb3f1b5ea9d |
source | Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1305 631/114/2114 Amino acid sequence Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis thaliana Binding Sites Computational Biology Deoxyribonucleic acid DNA DNA - genetics DNA - metabolism Gene expression Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Nucleotide sequence Protein Binding Regulatory sequences Science Science (multidisciplinary) Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20DNA%20shape%20is%20a%20general%20principle%20of%20transcription%20factor%20binding%20specificity%20in%20Arabidopsis%20thaliana&rft.jtitle=Nature%20communications&rft.au=Sielemann,%20Janik&rft.date=2021-11-12&rft.volume=12&rft.issue=1&rft.spage=6549&rft.epage=6549&rft.pages=6549-6549&rft.artnum=6549&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-26819-2&rft_dat=%3Cproquest_doaj_%3E2596809864%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-b5f53ad0197d5d71489d5e6782d422a29647b924b07f7efa354a961a8599b7b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596809864&rft_id=info:pmid/34772949&rfr_iscdi=true |