Loading…
Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials
A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component r...
Saved in:
Published in: | ACS omega 2022-08, Vol.7 (34), p.30420-30439 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253 |
---|---|
cites | cdi_FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253 |
container_end_page | 30439 |
container_issue | 34 |
container_start_page | 30420 |
container_title | ACS omega |
container_volume | 7 |
creator | Patel, Manan S. Parekh, Jaydeepkumar N. Chudasama, Dipakkumar D. Patel, Harsh C. Dalwadi, Priyanka Kunjadiya, Anju Bhatt, Vaibhav Ram, Kesur R. |
description | A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component reaction at room temperature. Following this protocol, it is possible to synthesize 1,1-dihomoarylmethane scaffolds of an assortment of C–H activated acids such as dimedone, 1,3-cyclohexadione, 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and 1-phenyl-3-methyl-pyrazolone. The salient features of the present green protocol are mild reaction conditions, good to excellent yields, operational simplicity, easy isolation of products, no cumbersome post treatment, high atom economy, and low E-factor. In addition, this chemistry portrays several green advantages including the reusability of reaction media and product scalability, which makes protocol sustainably efficient. Additionally, several control experiments such as protection of catalyst reactive site, D2O exchange, and 1H NMR studies revealed possible pathways for meglumine-promoted reactions. Inspired by the natural physiological environment of 1,1-dihomoarylmethane scaffolds, we reconnoitered the biological profile of our compounds and synthesized compounds that were promising for their antiproliferative and antibacterial activities. |
doi_str_mv | 10.1021/acsomega.2c03787 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf3ab7abfbbb4611bc177651a3125b83</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf3ab7abfbbb4611bc177651a3125b83</doaj_id><sourcerecordid>2709913110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEolXpnaOPHJrij8TOXpDQUkqlIipYztbYGW-8SuzFTir1b_CLMd0F0QOnsWfeeeZDU1WvGb1klLO3YHOccAuX3FKhOvWsOuWNojUTjXj-z_ukOs95RyllsuMdly-rEyGpLD91Wv38jNtxmXzA-i7FKc7Ykysb63Wc9jB7MyK5y7j0sd4MCfHRHwOGmXxFsLOPgbiYyDwg-fYQisk-k-gIu2D1Bz8UIqSHccJ5gFAkFpyLY58JhJ5sBvSJXBdsIOuEfaF6GPOr6oUrBs-P9qz6_vFqs_5U3365vlm_v62h4YrVRrasgU452ZmO4crxtqVGSGiwF8idtGZlDO9bVJ0RtrNt09IWm7ItCpS34qy6OXD7CDu9T34qreoIXj86YtpqSLO3I2rrBBgFxhljGsmYsUypUh8E463pRGG9O7D2i5mwt2WUBOMT6NNI8IPexnu9akTpShbAmyMgxR8L5llPPlscx7K2uGTNFV2tmGCMFik9SG2KOSd0f8swqn9fhv5zGfp4GSXl4pBSInoXlxTKYv8v_wVVvb3m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709913110</pqid></control><display><type>article</type><title>Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials</title><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Patel, Manan S. ; Parekh, Jaydeepkumar N. ; Chudasama, Dipakkumar D. ; Patel, Harsh C. ; Dalwadi, Priyanka ; Kunjadiya, Anju ; Bhatt, Vaibhav ; Ram, Kesur R.</creator><creatorcontrib>Patel, Manan S. ; Parekh, Jaydeepkumar N. ; Chudasama, Dipakkumar D. ; Patel, Harsh C. ; Dalwadi, Priyanka ; Kunjadiya, Anju ; Bhatt, Vaibhav ; Ram, Kesur R.</creatorcontrib><description>A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component reaction at room temperature. Following this protocol, it is possible to synthesize 1,1-dihomoarylmethane scaffolds of an assortment of C–H activated acids such as dimedone, 1,3-cyclohexadione, 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and 1-phenyl-3-methyl-pyrazolone. The salient features of the present green protocol are mild reaction conditions, good to excellent yields, operational simplicity, easy isolation of products, no cumbersome post treatment, high atom economy, and low E-factor. In addition, this chemistry portrays several green advantages including the reusability of reaction media and product scalability, which makes protocol sustainably efficient. Additionally, several control experiments such as protection of catalyst reactive site, D2O exchange, and 1H NMR studies revealed possible pathways for meglumine-promoted reactions. Inspired by the natural physiological environment of 1,1-dihomoarylmethane scaffolds, we reconnoitered the biological profile of our compounds and synthesized compounds that were promising for their antiproliferative and antibacterial activities.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.2c03787</identifier><identifier>PMID: 36061687</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2022-08, Vol.7 (34), p.30420-30439</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253</citedby><cites>FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253</cites><orcidid>0000-0003-1001-8960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.2c03787$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.2c03787$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27080,27924,27925,53791,53793,56762,56812</link.rule.ids></links><search><creatorcontrib>Patel, Manan S.</creatorcontrib><creatorcontrib>Parekh, Jaydeepkumar N.</creatorcontrib><creatorcontrib>Chudasama, Dipakkumar D.</creatorcontrib><creatorcontrib>Patel, Harsh C.</creatorcontrib><creatorcontrib>Dalwadi, Priyanka</creatorcontrib><creatorcontrib>Kunjadiya, Anju</creatorcontrib><creatorcontrib>Bhatt, Vaibhav</creatorcontrib><creatorcontrib>Ram, Kesur R.</creatorcontrib><title>Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component reaction at room temperature. Following this protocol, it is possible to synthesize 1,1-dihomoarylmethane scaffolds of an assortment of C–H activated acids such as dimedone, 1,3-cyclohexadione, 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and 1-phenyl-3-methyl-pyrazolone. The salient features of the present green protocol are mild reaction conditions, good to excellent yields, operational simplicity, easy isolation of products, no cumbersome post treatment, high atom economy, and low E-factor. In addition, this chemistry portrays several green advantages including the reusability of reaction media and product scalability, which makes protocol sustainably efficient. Additionally, several control experiments such as protection of catalyst reactive site, D2O exchange, and 1H NMR studies revealed possible pathways for meglumine-promoted reactions. Inspired by the natural physiological environment of 1,1-dihomoarylmethane scaffolds, we reconnoitered the biological profile of our compounds and synthesized compounds that were promising for their antiproliferative and antibacterial activities.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEolXpnaOPHJrij8TOXpDQUkqlIipYztbYGW-8SuzFTir1b_CLMd0F0QOnsWfeeeZDU1WvGb1klLO3YHOccAuX3FKhOvWsOuWNojUTjXj-z_ukOs95RyllsuMdly-rEyGpLD91Wv38jNtxmXzA-i7FKc7Ykysb63Wc9jB7MyK5y7j0sd4MCfHRHwOGmXxFsLOPgbiYyDwg-fYQisk-k-gIu2D1Bz8UIqSHccJ5gFAkFpyLY58JhJ5sBvSJXBdsIOuEfaF6GPOr6oUrBs-P9qz6_vFqs_5U3365vlm_v62h4YrVRrasgU452ZmO4crxtqVGSGiwF8idtGZlDO9bVJ0RtrNt09IWm7ItCpS34qy6OXD7CDu9T34qreoIXj86YtpqSLO3I2rrBBgFxhljGsmYsUypUh8E463pRGG9O7D2i5mwt2WUBOMT6NNI8IPexnu9akTpShbAmyMgxR8L5llPPlscx7K2uGTNFV2tmGCMFik9SG2KOSd0f8swqn9fhv5zGfp4GSXl4pBSInoXlxTKYv8v_wVVvb3m</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Patel, Manan S.</creator><creator>Parekh, Jaydeepkumar N.</creator><creator>Chudasama, Dipakkumar D.</creator><creator>Patel, Harsh C.</creator><creator>Dalwadi, Priyanka</creator><creator>Kunjadiya, Anju</creator><creator>Bhatt, Vaibhav</creator><creator>Ram, Kesur R.</creator><general>American Chemical Society</general><scope>N~.</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1001-8960</orcidid></search><sort><creationdate>20220830</creationdate><title>Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials</title><author>Patel, Manan S. ; Parekh, Jaydeepkumar N. ; Chudasama, Dipakkumar D. ; Patel, Harsh C. ; Dalwadi, Priyanka ; Kunjadiya, Anju ; Bhatt, Vaibhav ; Ram, Kesur R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Manan S.</creatorcontrib><creatorcontrib>Parekh, Jaydeepkumar N.</creatorcontrib><creatorcontrib>Chudasama, Dipakkumar D.</creatorcontrib><creatorcontrib>Patel, Harsh C.</creatorcontrib><creatorcontrib>Dalwadi, Priyanka</creatorcontrib><creatorcontrib>Kunjadiya, Anju</creatorcontrib><creatorcontrib>Bhatt, Vaibhav</creatorcontrib><creatorcontrib>Ram, Kesur R.</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Manan S.</au><au>Parekh, Jaydeepkumar N.</au><au>Chudasama, Dipakkumar D.</au><au>Patel, Harsh C.</au><au>Dalwadi, Priyanka</au><au>Kunjadiya, Anju</au><au>Bhatt, Vaibhav</au><au>Ram, Kesur R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2022-08-30</date><risdate>2022</risdate><volume>7</volume><issue>34</issue><spage>30420</spage><epage>30439</epage><pages>30420-30439</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component reaction at room temperature. Following this protocol, it is possible to synthesize 1,1-dihomoarylmethane scaffolds of an assortment of C–H activated acids such as dimedone, 1,3-cyclohexadione, 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and 1-phenyl-3-methyl-pyrazolone. The salient features of the present green protocol are mild reaction conditions, good to excellent yields, operational simplicity, easy isolation of products, no cumbersome post treatment, high atom economy, and low E-factor. In addition, this chemistry portrays several green advantages including the reusability of reaction media and product scalability, which makes protocol sustainably efficient. Additionally, several control experiments such as protection of catalyst reactive site, D2O exchange, and 1H NMR studies revealed possible pathways for meglumine-promoted reactions. Inspired by the natural physiological environment of 1,1-dihomoarylmethane scaffolds, we reconnoitered the biological profile of our compounds and synthesized compounds that were promising for their antiproliferative and antibacterial activities.</abstract><pub>American Chemical Society</pub><pmid>36061687</pmid><doi>10.1021/acsomega.2c03787</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1001-8960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-1343 |
ispartof | ACS omega, 2022-08, Vol.7 (34), p.30420-30439 |
issn | 2470-1343 2470-1343 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf3ab7abfbbb4611bc177651a3125b83 |
source | American Chemical Society (ACS) Open Access; PubMed Central |
title | Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meglumine-Promoted%20Eco-Compatible%20Pseudo-Three-Component%20Reaction%20for%20the%20Synthesis%20of%201,1-Dihomoarylmethane%20Scaffolds%20and%20Their%20Green%20Credentials&rft.jtitle=ACS%20omega&rft.au=Patel,%20Manan%20S.&rft.date=2022-08-30&rft.volume=7&rft.issue=34&rft.spage=30420&rft.epage=30439&rft.pages=30420-30439&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.2c03787&rft_dat=%3Cproquest_doaj_%3E2709913110%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4271-b6514a87f68b81e9f2550b36a4ed3e2f6cb9bb2d5e78b3c8c54505e42c00a0253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709913110&rft_id=info:pmid/36061687&rfr_iscdi=true |