Loading…
Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale
Lakes play a key role in the global water cycle, providing essential water resources and ecosystem services for humans and wildlife. Quantifying long-term changes in lake volume at a global scale is therefore important to the sustainability of humanity and natural ecosystems. Yet, such an estimate i...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (4), p.1032 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763 |
container_end_page | |
container_issue | 4 |
container_start_page | 1032 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 14 |
creator | Feng, Yuhao Zhang, Heng Tao, Shengli Ao, Zurui Song, Chunqiao Chave, Jérôme Le Toan, Thuy Xue, Baolin Zhu, Jiangling Pan, Jiamin Wang, Shaopeng Tang, Zhiyao Fang, Jingyun |
description | Lakes play a key role in the global water cycle, providing essential water resources and ecosystem services for humans and wildlife. Quantifying long-term changes in lake volume at a global scale is therefore important to the sustainability of humanity and natural ecosystems. Yet, such an estimate is still unavailable because, unlike lake area, lake volume is three-dimensional, challenging to be estimated consistently across space and time. Here, taking advantage of recent advances in remote sensing technology, especially NASA’s ICESat-2 satellite laser altimeter launched in 2018, we generated monthly volume series from 2003 to 2020 for 9065 lakes worldwide with an area ≥ 10 km2. We found that the total volume of the 9065 lakes increased by 597 km3 (90% confidence interval 239–2618 km3). Validation against in situ measurements showed a correlation coefficient of 0.98, an RMSE (i.e., root mean square error) of 0.57 km3 and a normalized RMSE of 2.6%. In addition, 6753 (74.5%) of the lakes showed an increasing trend in lake volume and were spatially clustered into nine hot spots, most of which are located in sparsely populated high latitudes and the Tibetan Plateau; 2323 (25.5%) of the lakes showed a decreasing trend in lake volume and were clustered into six hot spots—most located in the world’s arid/semi-arid regions where lakes are scarce, but population density is high. Our results uncovered, from a three-dimensional volumetric perspective, spatially uneven lake changes that aggravate the conflict between human demands and lake resources. The situation is likely to intensify given projected higher temperatures in glacier-covered regions and drier climates in arid/semi-arid areas. The 15 hot spots could serve as a blueprint for prioritizing future lake research and conservation efforts. |
doi_str_mv | 10.3390/rs14041032 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf457051609b41c68c9f91a041cd8323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf457051609b41c68c9f91a041cd8323</doaj_id><sourcerecordid>2633131208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763</originalsourceid><addsrcrecordid>eNpVkctOAjEUQCdGEwmy8QuauFETtC_a6ZKAPBKiCx_b5tJpYXCYYgsk7vwH_9AvsYoRvZt7c3Nych9ZdkrwFWMKX4dIOOYEM3qQNSiWtM2pood_6uOsFeMCp2CMKMwb2W3fGiigQhN4tujJV5ulRb051DMb0TlN4MfbO8UUXyCoC9QP5basZ2jgg0kArBGgYeWnSXBvoLIn2ZGDKtrWT25mj4Obh96oPbkbjnvdSdswJdZtlTuVWyemUy6JEIJS0VGMOTCWdUxeYKJMQYs0meBWACPESSWdsnkhuZGCNbPxzlt4WOhVKJcQXrWHUn83fJhpCOvSVFYbxzsSd4jAasqJEblRThFIhzJFzihLrsudaw7VP9WoO9FlHTca8wQqKbckwWc7eBX8y8bGtV74TajTrpqKdFRGKM73ShN8jMG6Xy_B-utXev8r9gkxD4Er</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633131208</pqid></control><display><type>article</type><title>Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale</title><source>Publicly Available Content Database</source><creator>Feng, Yuhao ; Zhang, Heng ; Tao, Shengli ; Ao, Zurui ; Song, Chunqiao ; Chave, Jérôme ; Le Toan, Thuy ; Xue, Baolin ; Zhu, Jiangling ; Pan, Jiamin ; Wang, Shaopeng ; Tang, Zhiyao ; Fang, Jingyun</creator><creatorcontrib>Feng, Yuhao ; Zhang, Heng ; Tao, Shengli ; Ao, Zurui ; Song, Chunqiao ; Chave, Jérôme ; Le Toan, Thuy ; Xue, Baolin ; Zhu, Jiangling ; Pan, Jiamin ; Wang, Shaopeng ; Tang, Zhiyao ; Fang, Jingyun</creatorcontrib><description>Lakes play a key role in the global water cycle, providing essential water resources and ecosystem services for humans and wildlife. Quantifying long-term changes in lake volume at a global scale is therefore important to the sustainability of humanity and natural ecosystems. Yet, such an estimate is still unavailable because, unlike lake area, lake volume is three-dimensional, challenging to be estimated consistently across space and time. Here, taking advantage of recent advances in remote sensing technology, especially NASA’s ICESat-2 satellite laser altimeter launched in 2018, we generated monthly volume series from 2003 to 2020 for 9065 lakes worldwide with an area ≥ 10 km2. We found that the total volume of the 9065 lakes increased by 597 km3 (90% confidence interval 239–2618 km3). Validation against in situ measurements showed a correlation coefficient of 0.98, an RMSE (i.e., root mean square error) of 0.57 km3 and a normalized RMSE of 2.6%. In addition, 6753 (74.5%) of the lakes showed an increasing trend in lake volume and were spatially clustered into nine hot spots, most of which are located in sparsely populated high latitudes and the Tibetan Plateau; 2323 (25.5%) of the lakes showed a decreasing trend in lake volume and were clustered into six hot spots—most located in the world’s arid/semi-arid regions where lakes are scarce, but population density is high. Our results uncovered, from a three-dimensional volumetric perspective, spatially uneven lake changes that aggravate the conflict between human demands and lake resources. The situation is likely to intensify given projected higher temperatures in glacier-covered regions and drier climates in arid/semi-arid areas. The 15 hot spots could serve as a blueprint for prioritizing future lake research and conservation efforts.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14041032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arid regions ; Arid zones ; Climate change ; Confidence intervals ; Correlation coefficient ; Correlation coefficients ; Ecosystem services ; Glaciers ; High temperature ; Hydrologic cycle ; Hydrology ; ICESat ; ICESat-2 ; In situ measurement ; lake volume ; lake water level ; Lakes ; Landsat ; Laser altimeters ; Lasers ; Morphology ; Population density ; Remote sensing ; Root-mean-square errors ; Satellites ; Sciences of the Universe ; Semi arid areas ; Semiarid zones ; Surface water ; Time series ; Topography ; Water resources ; Wildlife</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-02, Vol.14 (4), p.1032</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763</citedby><cites>FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763</cites><orcidid>0000-0002-2145-4736 ; 0000-0002-1720-9084 ; 0000-0003-1060-4636 ; 0000-0002-4479-7889 ; 0000-0003-0444-8139 ; 0000-0002-5163-6020 ; 0000-0003-0154-6403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633131208/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633131208?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,44566,74869</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04832977$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Yuhao</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Tao, Shengli</creatorcontrib><creatorcontrib>Ao, Zurui</creatorcontrib><creatorcontrib>Song, Chunqiao</creatorcontrib><creatorcontrib>Chave, Jérôme</creatorcontrib><creatorcontrib>Le Toan, Thuy</creatorcontrib><creatorcontrib>Xue, Baolin</creatorcontrib><creatorcontrib>Zhu, Jiangling</creatorcontrib><creatorcontrib>Pan, Jiamin</creatorcontrib><creatorcontrib>Wang, Shaopeng</creatorcontrib><creatorcontrib>Tang, Zhiyao</creatorcontrib><creatorcontrib>Fang, Jingyun</creatorcontrib><title>Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale</title><title>Remote sensing (Basel, Switzerland)</title><description>Lakes play a key role in the global water cycle, providing essential water resources and ecosystem services for humans and wildlife. Quantifying long-term changes in lake volume at a global scale is therefore important to the sustainability of humanity and natural ecosystems. Yet, such an estimate is still unavailable because, unlike lake area, lake volume is three-dimensional, challenging to be estimated consistently across space and time. Here, taking advantage of recent advances in remote sensing technology, especially NASA’s ICESat-2 satellite laser altimeter launched in 2018, we generated monthly volume series from 2003 to 2020 for 9065 lakes worldwide with an area ≥ 10 km2. We found that the total volume of the 9065 lakes increased by 597 km3 (90% confidence interval 239–2618 km3). Validation against in situ measurements showed a correlation coefficient of 0.98, an RMSE (i.e., root mean square error) of 0.57 km3 and a normalized RMSE of 2.6%. In addition, 6753 (74.5%) of the lakes showed an increasing trend in lake volume and were spatially clustered into nine hot spots, most of which are located in sparsely populated high latitudes and the Tibetan Plateau; 2323 (25.5%) of the lakes showed a decreasing trend in lake volume and were clustered into six hot spots—most located in the world’s arid/semi-arid regions where lakes are scarce, but population density is high. Our results uncovered, from a three-dimensional volumetric perspective, spatially uneven lake changes that aggravate the conflict between human demands and lake resources. The situation is likely to intensify given projected higher temperatures in glacier-covered regions and drier climates in arid/semi-arid areas. The 15 hot spots could serve as a blueprint for prioritizing future lake research and conservation efforts.</description><subject>Arid regions</subject><subject>Arid zones</subject><subject>Climate change</subject><subject>Confidence intervals</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Ecosystem services</subject><subject>Glaciers</subject><subject>High temperature</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>ICESat</subject><subject>ICESat-2</subject><subject>In situ measurement</subject><subject>lake volume</subject><subject>lake water level</subject><subject>Lakes</subject><subject>Landsat</subject><subject>Laser altimeters</subject><subject>Lasers</subject><subject>Morphology</subject><subject>Population density</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Semi arid areas</subject><subject>Semiarid zones</subject><subject>Surface water</subject><subject>Time series</subject><subject>Topography</subject><subject>Water resources</subject><subject>Wildlife</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkctOAjEUQCdGEwmy8QuauFETtC_a6ZKAPBKiCx_b5tJpYXCYYgsk7vwH_9AvsYoRvZt7c3Nych9ZdkrwFWMKX4dIOOYEM3qQNSiWtM2pood_6uOsFeMCp2CMKMwb2W3fGiigQhN4tujJV5ulRb051DMb0TlN4MfbO8UUXyCoC9QP5basZ2jgg0kArBGgYeWnSXBvoLIn2ZGDKtrWT25mj4Obh96oPbkbjnvdSdswJdZtlTuVWyemUy6JEIJS0VGMOTCWdUxeYKJMQYs0meBWACPESSWdsnkhuZGCNbPxzlt4WOhVKJcQXrWHUn83fJhpCOvSVFYbxzsSd4jAasqJEblRThFIhzJFzihLrsudaw7VP9WoO9FlHTca8wQqKbckwWc7eBX8y8bGtV74TajTrpqKdFRGKM73ShN8jMG6Xy_B-utXev8r9gkxD4Er</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Feng, Yuhao</creator><creator>Zhang, Heng</creator><creator>Tao, Shengli</creator><creator>Ao, Zurui</creator><creator>Song, Chunqiao</creator><creator>Chave, Jérôme</creator><creator>Le Toan, Thuy</creator><creator>Xue, Baolin</creator><creator>Zhu, Jiangling</creator><creator>Pan, Jiamin</creator><creator>Wang, Shaopeng</creator><creator>Tang, Zhiyao</creator><creator>Fang, Jingyun</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2145-4736</orcidid><orcidid>https://orcid.org/0000-0002-1720-9084</orcidid><orcidid>https://orcid.org/0000-0003-1060-4636</orcidid><orcidid>https://orcid.org/0000-0002-4479-7889</orcidid><orcidid>https://orcid.org/0000-0003-0444-8139</orcidid><orcidid>https://orcid.org/0000-0002-5163-6020</orcidid><orcidid>https://orcid.org/0000-0003-0154-6403</orcidid></search><sort><creationdate>20220201</creationdate><title>Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale</title><author>Feng, Yuhao ; Zhang, Heng ; Tao, Shengli ; Ao, Zurui ; Song, Chunqiao ; Chave, Jérôme ; Le Toan, Thuy ; Xue, Baolin ; Zhu, Jiangling ; Pan, Jiamin ; Wang, Shaopeng ; Tang, Zhiyao ; Fang, Jingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arid regions</topic><topic>Arid zones</topic><topic>Climate change</topic><topic>Confidence intervals</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Ecosystem services</topic><topic>Glaciers</topic><topic>High temperature</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>ICESat</topic><topic>ICESat-2</topic><topic>In situ measurement</topic><topic>lake volume</topic><topic>lake water level</topic><topic>Lakes</topic><topic>Landsat</topic><topic>Laser altimeters</topic><topic>Lasers</topic><topic>Morphology</topic><topic>Population density</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Semi arid areas</topic><topic>Semiarid zones</topic><topic>Surface water</topic><topic>Time series</topic><topic>Topography</topic><topic>Water resources</topic><topic>Wildlife</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yuhao</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Tao, Shengli</creatorcontrib><creatorcontrib>Ao, Zurui</creatorcontrib><creatorcontrib>Song, Chunqiao</creatorcontrib><creatorcontrib>Chave, Jérôme</creatorcontrib><creatorcontrib>Le Toan, Thuy</creatorcontrib><creatorcontrib>Xue, Baolin</creatorcontrib><creatorcontrib>Zhu, Jiangling</creatorcontrib><creatorcontrib>Pan, Jiamin</creatorcontrib><creatorcontrib>Wang, Shaopeng</creatorcontrib><creatorcontrib>Tang, Zhiyao</creatorcontrib><creatorcontrib>Fang, Jingyun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yuhao</au><au>Zhang, Heng</au><au>Tao, Shengli</au><au>Ao, Zurui</au><au>Song, Chunqiao</au><au>Chave, Jérôme</au><au>Le Toan, Thuy</au><au>Xue, Baolin</au><au>Zhu, Jiangling</au><au>Pan, Jiamin</au><au>Wang, Shaopeng</au><au>Tang, Zhiyao</au><au>Fang, Jingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>1032</spage><pages>1032-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Lakes play a key role in the global water cycle, providing essential water resources and ecosystem services for humans and wildlife. Quantifying long-term changes in lake volume at a global scale is therefore important to the sustainability of humanity and natural ecosystems. Yet, such an estimate is still unavailable because, unlike lake area, lake volume is three-dimensional, challenging to be estimated consistently across space and time. Here, taking advantage of recent advances in remote sensing technology, especially NASA’s ICESat-2 satellite laser altimeter launched in 2018, we generated monthly volume series from 2003 to 2020 for 9065 lakes worldwide with an area ≥ 10 km2. We found that the total volume of the 9065 lakes increased by 597 km3 (90% confidence interval 239–2618 km3). Validation against in situ measurements showed a correlation coefficient of 0.98, an RMSE (i.e., root mean square error) of 0.57 km3 and a normalized RMSE of 2.6%. In addition, 6753 (74.5%) of the lakes showed an increasing trend in lake volume and were spatially clustered into nine hot spots, most of which are located in sparsely populated high latitudes and the Tibetan Plateau; 2323 (25.5%) of the lakes showed a decreasing trend in lake volume and were clustered into six hot spots—most located in the world’s arid/semi-arid regions where lakes are scarce, but population density is high. Our results uncovered, from a three-dimensional volumetric perspective, spatially uneven lake changes that aggravate the conflict between human demands and lake resources. The situation is likely to intensify given projected higher temperatures in glacier-covered regions and drier climates in arid/semi-arid areas. The 15 hot spots could serve as a blueprint for prioritizing future lake research and conservation efforts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14041032</doi><orcidid>https://orcid.org/0000-0002-2145-4736</orcidid><orcidid>https://orcid.org/0000-0002-1720-9084</orcidid><orcidid>https://orcid.org/0000-0003-1060-4636</orcidid><orcidid>https://orcid.org/0000-0002-4479-7889</orcidid><orcidid>https://orcid.org/0000-0003-0444-8139</orcidid><orcidid>https://orcid.org/0000-0002-5163-6020</orcidid><orcidid>https://orcid.org/0000-0003-0154-6403</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2022-02, Vol.14 (4), p.1032 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf457051609b41c68c9f91a041cd8323 |
source | Publicly Available Content Database |
subjects | Arid regions Arid zones Climate change Confidence intervals Correlation coefficient Correlation coefficients Ecosystem services Glaciers High temperature Hydrologic cycle Hydrology ICESat ICESat-2 In situ measurement lake volume lake water level Lakes Landsat Laser altimeters Lasers Morphology Population density Remote sensing Root-mean-square errors Satellites Sciences of the Universe Semi arid areas Semiarid zones Surface water Time series Topography Water resources Wildlife |
title | Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decadal%20Lake%20Volume%20Changes%20(2003%E2%80%932020)%20and%20Driving%20Forces%20at%20a%20Global%20Scale&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Feng,%20Yuhao&rft.date=2022-02-01&rft.volume=14&rft.issue=4&rft.spage=1032&rft.pages=1032-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14041032&rft_dat=%3Cproquest_doaj_%3E2633131208%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-98f98ef6bb4716662265933face35c8d019cd2dcad64e6a311f797f9e8d74c763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633131208&rft_id=info:pmid/&rfr_iscdi=true |