Loading…
On the Exact Solution of a Scalar Differential Equation via a Simple Analytical Approach
The existence of the advance parameter in a scalar differential equation prevents the application of the well-known standard methods used for solving classical ordinary differential equations. A simple procedure is introduced in this paper to remove the advance parameter from a special kind of first...
Saved in:
Published in: | Axioms 2024-02, Vol.13 (2), p.129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-753defae0590a189a36896ccffa832e44e5d2354fdb6751caaac0de251a25ace3 |
container_end_page | |
container_issue | 2 |
container_start_page | 129 |
container_title | Axioms |
container_volume | 13 |
creator | Alshomrani, Nada A. M. Ebaid, Abdelhalim Aldosari, Faten Aljoufi, Mona D. |
description | The existence of the advance parameter in a scalar differential equation prevents the application of the well-known standard methods used for solving classical ordinary differential equations. A simple procedure is introduced in this paper to remove the advance parameter from a special kind of first-order scalar differential equation. The suggested approach transforms the given first-order scalar differential equation to an equivalent second-order ordinary differential equation (ODE) without the advance parameter. Using this method, we are able to construct the exact solution of both the transformed model and the given original model. The exact solution is obtained in a wave form with specified amplitude and phase. Furthermore, several special cases are investigated at certain values/relationships of the involved parameters. It is shown that the exact solution in the absence of the advance parameter reduces to the corresponding solution in the literature. In addition, it is declared that the current model enjoys various kinds of solutions, such as constant solutions, polynomial solutions, and periodic solutions under certain constraints of the included parameters. |
doi_str_mv | 10.3390/axioms13020129 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf52d2de87ed47e1a2e83020102fdf7a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784036501</galeid><doaj_id>oai_doaj_org_article_cf52d2de87ed47e1a2e83020102fdf7a</doaj_id><sourcerecordid>A784036501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-753defae0590a189a36896ccffa832e44e5d2354fdb6751caaac0de251a25ace3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRUGqvngOeW_Ox2c0ei1YtFDxUwVsYk0mbst202a20_960FT-SQ8Lw5OGdTJbdMDoUoqJ3sPNh1TJBOWW8OsuuOC3lgBWKnv-5X2b9tl3StComFBNX2ftLQ7oFkvEOTEdmod52PjQkOAJkZqCGSB68cxix6TzUZLzZwpH49HBA_GpdIxk1UO87n3gyWq9jALO4zi4c1C32v89e9vY4fr1_Hkxfnib3o-nA8KrsBqUUFh0glRUFpioQhaoKY5wDJTjmOUrLhcyd_ShKyQwAGGqRSwZcgkHRyyYnrw2w1OvoVxD3OoDXx0KIcw0xRatRGye55RZViTYvMRlQHT-McmddCcl1e3KlFjZbbDu9DNuYems1rwTNVYpGEzU8UXNIUt-40EUwaVtceRMadD7VR6XKqSgkZb8PTAxtG9H9xGRUH6an_09PfAFlx41s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930488960</pqid></control><display><type>article</type><title>On the Exact Solution of a Scalar Differential Equation via a Simple Analytical Approach</title><source>Publicly Available Content Database</source><creator>Alshomrani, Nada A. M. ; Ebaid, Abdelhalim ; Aldosari, Faten ; Aljoufi, Mona D.</creator><creatorcontrib>Alshomrani, Nada A. M. ; Ebaid, Abdelhalim ; Aldosari, Faten ; Aljoufi, Mona D.</creatorcontrib><description>The existence of the advance parameter in a scalar differential equation prevents the application of the well-known standard methods used for solving classical ordinary differential equations. A simple procedure is introduced in this paper to remove the advance parameter from a special kind of first-order scalar differential equation. The suggested approach transforms the given first-order scalar differential equation to an equivalent second-order ordinary differential equation (ODE) without the advance parameter. Using this method, we are able to construct the exact solution of both the transformed model and the given original model. The exact solution is obtained in a wave form with specified amplitude and phase. Furthermore, several special cases are investigated at certain values/relationships of the involved parameters. It is shown that the exact solution in the absence of the advance parameter reduces to the corresponding solution in the literature. In addition, it is declared that the current model enjoys various kinds of solutions, such as constant solutions, polynomial solutions, and periodic solutions under certain constraints of the included parameters.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms13020129</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary value problems ; delay ; Differential equations ; exact solution ; Exact solutions ; Functional analysis ; initial value problem ; Mathematical models ; Methods ; ordinary differential equation ; Ordinary differential equations ; Parameters ; Polynomials ; Scalar functions ; Tests, problems and exercises</subject><ispartof>Axioms, 2024-02, Vol.13 (2), p.129</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-753defae0590a189a36896ccffa832e44e5d2354fdb6751caaac0de251a25ace3</cites><orcidid>0000-0002-1122-6297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2930488960/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2930488960?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Alshomrani, Nada A. M.</creatorcontrib><creatorcontrib>Ebaid, Abdelhalim</creatorcontrib><creatorcontrib>Aldosari, Faten</creatorcontrib><creatorcontrib>Aljoufi, Mona D.</creatorcontrib><title>On the Exact Solution of a Scalar Differential Equation via a Simple Analytical Approach</title><title>Axioms</title><description>The existence of the advance parameter in a scalar differential equation prevents the application of the well-known standard methods used for solving classical ordinary differential equations. A simple procedure is introduced in this paper to remove the advance parameter from a special kind of first-order scalar differential equation. The suggested approach transforms the given first-order scalar differential equation to an equivalent second-order ordinary differential equation (ODE) without the advance parameter. Using this method, we are able to construct the exact solution of both the transformed model and the given original model. The exact solution is obtained in a wave form with specified amplitude and phase. Furthermore, several special cases are investigated at certain values/relationships of the involved parameters. It is shown that the exact solution in the absence of the advance parameter reduces to the corresponding solution in the literature. In addition, it is declared that the current model enjoys various kinds of solutions, such as constant solutions, polynomial solutions, and periodic solutions under certain constraints of the included parameters.</description><subject>Boundary value problems</subject><subject>delay</subject><subject>Differential equations</subject><subject>exact solution</subject><subject>Exact solutions</subject><subject>Functional analysis</subject><subject>initial value problem</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>ordinary differential equation</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Scalar functions</subject><subject>Tests, problems and exercises</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhhdRUGqvngOeW_Ox2c0ei1YtFDxUwVsYk0mbst202a20_960FT-SQ8Lw5OGdTJbdMDoUoqJ3sPNh1TJBOWW8OsuuOC3lgBWKnv-5X2b9tl3StComFBNX2ftLQ7oFkvEOTEdmod52PjQkOAJkZqCGSB68cxix6TzUZLzZwpH49HBA_GpdIxk1UO87n3gyWq9jALO4zi4c1C32v89e9vY4fr1_Hkxfnib3o-nA8KrsBqUUFh0glRUFpioQhaoKY5wDJTjmOUrLhcyd_ShKyQwAGGqRSwZcgkHRyyYnrw2w1OvoVxD3OoDXx0KIcw0xRatRGye55RZViTYvMRlQHT-McmddCcl1e3KlFjZbbDu9DNuYems1rwTNVYpGEzU8UXNIUt-40EUwaVtceRMadD7VR6XKqSgkZb8PTAxtG9H9xGRUH6an_09PfAFlx41s</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Alshomrani, Nada A. M.</creator><creator>Ebaid, Abdelhalim</creator><creator>Aldosari, Faten</creator><creator>Aljoufi, Mona D.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1122-6297</orcidid></search><sort><creationdate>20240201</creationdate><title>On the Exact Solution of a Scalar Differential Equation via a Simple Analytical Approach</title><author>Alshomrani, Nada A. M. ; Ebaid, Abdelhalim ; Aldosari, Faten ; Aljoufi, Mona D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-753defae0590a189a36896ccffa832e44e5d2354fdb6751caaac0de251a25ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>delay</topic><topic>Differential equations</topic><topic>exact solution</topic><topic>Exact solutions</topic><topic>Functional analysis</topic><topic>initial value problem</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>ordinary differential equation</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Scalar functions</topic><topic>Tests, problems and exercises</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alshomrani, Nada A. M.</creatorcontrib><creatorcontrib>Ebaid, Abdelhalim</creatorcontrib><creatorcontrib>Aldosari, Faten</creatorcontrib><creatorcontrib>Aljoufi, Mona D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alshomrani, Nada A. M.</au><au>Ebaid, Abdelhalim</au><au>Aldosari, Faten</au><au>Aljoufi, Mona D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Exact Solution of a Scalar Differential Equation via a Simple Analytical Approach</atitle><jtitle>Axioms</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>129</spage><pages>129-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>The existence of the advance parameter in a scalar differential equation prevents the application of the well-known standard methods used for solving classical ordinary differential equations. A simple procedure is introduced in this paper to remove the advance parameter from a special kind of first-order scalar differential equation. The suggested approach transforms the given first-order scalar differential equation to an equivalent second-order ordinary differential equation (ODE) without the advance parameter. Using this method, we are able to construct the exact solution of both the transformed model and the given original model. The exact solution is obtained in a wave form with specified amplitude and phase. Furthermore, several special cases are investigated at certain values/relationships of the involved parameters. It is shown that the exact solution in the absence of the advance parameter reduces to the corresponding solution in the literature. In addition, it is declared that the current model enjoys various kinds of solutions, such as constant solutions, polynomial solutions, and periodic solutions under certain constraints of the included parameters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms13020129</doi><orcidid>https://orcid.org/0000-0002-1122-6297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2024-02, Vol.13 (2), p.129 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf52d2de87ed47e1a2e83020102fdf7a |
source | Publicly Available Content Database |
subjects | Boundary value problems delay Differential equations exact solution Exact solutions Functional analysis initial value problem Mathematical models Methods ordinary differential equation Ordinary differential equations Parameters Polynomials Scalar functions Tests, problems and exercises |
title | On the Exact Solution of a Scalar Differential Equation via a Simple Analytical Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Exact%20Solution%20of%20a%20Scalar%20Differential%20Equation%20via%20a%20Simple%20Analytical%20Approach&rft.jtitle=Axioms&rft.au=Alshomrani,%20Nada%20A.%20M.&rft.date=2024-02-01&rft.volume=13&rft.issue=2&rft.spage=129&rft.pages=129-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms13020129&rft_dat=%3Cgale_doaj_%3EA784036501%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-753defae0590a189a36896ccffa832e44e5d2354fdb6751caaac0de251a25ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930488960&rft_id=info:pmid/&rft_galeid=A784036501&rfr_iscdi=true |