Loading…

Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data

Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approach...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-04, Vol.15 (7), p.1764
Main Authors: Fahle, Lukas, Petruska, Andrew J., Walton, Gabriel, Brune, Jurgen F., Holley, Elizabeth A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53
cites cdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53
container_end_page
container_issue 7
container_start_page 1764
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Fahle, Lukas
Petruska, Andrew J.
Walton, Gabriel
Brune, Jurgen F.
Holley, Elizabeth A.
description Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.
doi_str_mv 10.3390/rs15071764
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf5aacfcab8d4e21b412a72710b0adcb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750513118</galeid><doaj_id>oai_doaj_org_article_cf5aacfcab8d4e21b412a72710b0adcb</doaj_id><sourcerecordid>A750513118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</originalsourceid><addsrcrecordid>eNpNUsFu1DAQjRBIVKUXvsASN6SUsZ3EybG0pay0qBK75WpN7EnqVdZeHG-hX9bfw9utAPvg0cx7T89PUxTvOZxL2cGnOPMaFFdN9ao4EaBEWYlOvP6vfluczfMG8pGSd1CdFE9X9EBT2G3JJ4besjXNyfmRhYHdmhSJys84k2ULnyKWP8JvmtgqYXIZZnDK_YEieUMsBXbtsZ-IfSecyrXbEruhkMjc-2fot-BdCvFFfYlxpHKVB8TuvKU4xrDPBlY7NDSzXy7dZ0bv8niZHUSWod4fyFeY8F3xZsBpprOX97S4-3K9vvxaLm9vFpcXy9JUAKns5MD7llprDXKp2mZopTD58woIJFrFOZIw0LRWgax5BRXUtrGNgE6AreVpsTjq2oAbvYtui_FRB3T6uRHiqDHmJCbSZqgRzWCwb21FgvcVF6iE4tADWtNnrQ9HrV0MP_c5Z70J--izfS1U1zUdiKbNqPMjaszJaOeHkIM3-VraOhM8DTkSfaFqqLnk_ED4eCSYGOY50vDXJgd9WAz9bzHkH8roq_c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799690268</pqid></control><display><type>article</type><title>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Fahle, Lukas ; Petruska, Andrew J. ; Walton, Gabriel ; Brune, Jurgen F. ; Holley, Elizabeth A.</creator><creatorcontrib>Fahle, Lukas ; Petruska, Andrew J. ; Walton, Gabriel ; Brune, Jurgen F. ; Holley, Elizabeth A.</creatorcontrib><description>Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15071764</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Automation ; Change detection ; Computer applications ; Convergence ; Datasets ; Deformation ; Deformation analysis ; Field tests ; geotechnical monitoring ; Laser applications ; Lasers ; Metadata ; Methods ; Microprocessors ; Mineral industry ; Mines ; Mining ; Mining industry ; Missing data ; mobile laser scanning ; Monitoring ; octree data structures ; Octrees ; Parameter sensitivity ; Real time ; real-time computation ; Remote sensing ; Rockfall ; Scale models ; Scanning ; Sensors ; Statistical inference ; Statistics ; Underground caverns ; Underground mines</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-04, Vol.15 (7), p.1764</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</citedby><cites>FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</cites><orcidid>0000-0002-3660-7520 ; 0000-0002-5963-7941 ; 0000-0003-2070-4227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2799690268/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2799690268?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Fahle, Lukas</creatorcontrib><creatorcontrib>Petruska, Andrew J.</creatorcontrib><creatorcontrib>Walton, Gabriel</creatorcontrib><creatorcontrib>Brune, Jurgen F.</creatorcontrib><creatorcontrib>Holley, Elizabeth A.</creatorcontrib><title>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</title><title>Remote sensing (Basel, Switzerland)</title><description>Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Change detection</subject><subject>Computer applications</subject><subject>Convergence</subject><subject>Datasets</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Field tests</subject><subject>geotechnical monitoring</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Metadata</subject><subject>Methods</subject><subject>Microprocessors</subject><subject>Mineral industry</subject><subject>Mines</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Missing data</subject><subject>mobile laser scanning</subject><subject>Monitoring</subject><subject>octree data structures</subject><subject>Octrees</subject><subject>Parameter sensitivity</subject><subject>Real time</subject><subject>real-time computation</subject><subject>Remote sensing</subject><subject>Rockfall</subject><subject>Scale models</subject><subject>Scanning</subject><subject>Sensors</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Underground caverns</subject><subject>Underground mines</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUsFu1DAQjRBIVKUXvsASN6SUsZ3EybG0pay0qBK75WpN7EnqVdZeHG-hX9bfw9utAPvg0cx7T89PUxTvOZxL2cGnOPMaFFdN9ao4EaBEWYlOvP6vfluczfMG8pGSd1CdFE9X9EBT2G3JJ4besjXNyfmRhYHdmhSJys84k2ULnyKWP8JvmtgqYXIZZnDK_YEieUMsBXbtsZ-IfSecyrXbEruhkMjc-2fot-BdCvFFfYlxpHKVB8TuvKU4xrDPBlY7NDSzXy7dZ0bv8niZHUSWod4fyFeY8F3xZsBpprOX97S4-3K9vvxaLm9vFpcXy9JUAKns5MD7llprDXKp2mZopTD58woIJFrFOZIw0LRWgax5BRXUtrGNgE6AreVpsTjq2oAbvYtui_FRB3T6uRHiqDHmJCbSZqgRzWCwb21FgvcVF6iE4tADWtNnrQ9HrV0MP_c5Z70J--izfS1U1zUdiKbNqPMjaszJaOeHkIM3-VraOhM8DTkSfaFqqLnk_ED4eCSYGOY50vDXJgd9WAz9bzHkH8roq_c</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Fahle, Lukas</creator><creator>Petruska, Andrew J.</creator><creator>Walton, Gabriel</creator><creator>Brune, Jurgen F.</creator><creator>Holley, Elizabeth A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3660-7520</orcidid><orcidid>https://orcid.org/0000-0002-5963-7941</orcidid><orcidid>https://orcid.org/0000-0003-2070-4227</orcidid></search><sort><creationdate>20230401</creationdate><title>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</title><author>Fahle, Lukas ; Petruska, Andrew J. ; Walton, Gabriel ; Brune, Jurgen F. ; Holley, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Change detection</topic><topic>Computer applications</topic><topic>Convergence</topic><topic>Datasets</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Field tests</topic><topic>geotechnical monitoring</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Metadata</topic><topic>Methods</topic><topic>Microprocessors</topic><topic>Mineral industry</topic><topic>Mines</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Missing data</topic><topic>mobile laser scanning</topic><topic>Monitoring</topic><topic>octree data structures</topic><topic>Octrees</topic><topic>Parameter sensitivity</topic><topic>Real time</topic><topic>real-time computation</topic><topic>Remote sensing</topic><topic>Rockfall</topic><topic>Scale models</topic><topic>Scanning</topic><topic>Sensors</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Underground caverns</topic><topic>Underground mines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahle, Lukas</creatorcontrib><creatorcontrib>Petruska, Andrew J.</creatorcontrib><creatorcontrib>Walton, Gabriel</creatorcontrib><creatorcontrib>Brune, Jurgen F.</creatorcontrib><creatorcontrib>Holley, Elizabeth A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahle, Lukas</au><au>Petruska, Andrew J.</au><au>Walton, Gabriel</au><au>Brune, Jurgen F.</au><au>Holley, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>1764</spage><pages>1764-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15071764</doi><orcidid>https://orcid.org/0000-0002-3660-7520</orcidid><orcidid>https://orcid.org/0000-0002-5963-7941</orcidid><orcidid>https://orcid.org/0000-0003-2070-4227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-04, Vol.15 (7), p.1764
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cf5aacfcab8d4e21b412a72710b0adcb
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Automation
Change detection
Computer applications
Convergence
Datasets
Deformation
Deformation analysis
Field tests
geotechnical monitoring
Laser applications
Lasers
Metadata
Methods
Microprocessors
Mineral industry
Mines
Mining
Mining industry
Missing data
mobile laser scanning
Monitoring
octree data structures
Octrees
Parameter sensitivity
Real time
real-time computation
Remote sensing
Rockfall
Scale models
Scanning
Sensors
Statistical inference
Statistics
Underground caverns
Underground mines
title Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Testing%20of%20Octree-Based%20Intra-Voxel%20Statistical%20Inference%20to%20Enable%20Real-Time%20Geotechnical%20Monitoring%20of%20Large-Scale%20Underground%20Spaces%20with%20Mobile%20Laser%20Scanning%20Data&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Fahle,%20Lukas&rft.date=2023-04-01&rft.volume=15&rft.issue=7&rft.spage=1764&rft.pages=1764-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15071764&rft_dat=%3Cgale_doaj_%3EA750513118%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799690268&rft_id=info:pmid/&rft_galeid=A750513118&rfr_iscdi=true