Loading…
Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data
Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approach...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-04, Vol.15 (7), p.1764 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53 |
container_end_page | |
container_issue | 7 |
container_start_page | 1764 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Fahle, Lukas Petruska, Andrew J. Walton, Gabriel Brune, Jurgen F. Holley, Elizabeth A. |
description | Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces. |
doi_str_mv | 10.3390/rs15071764 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf5aacfcab8d4e21b412a72710b0adcb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750513118</galeid><doaj_id>oai_doaj_org_article_cf5aacfcab8d4e21b412a72710b0adcb</doaj_id><sourcerecordid>A750513118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</originalsourceid><addsrcrecordid>eNpNUsFu1DAQjRBIVKUXvsASN6SUsZ3EybG0pay0qBK75WpN7EnqVdZeHG-hX9bfw9utAPvg0cx7T89PUxTvOZxL2cGnOPMaFFdN9ao4EaBEWYlOvP6vfluczfMG8pGSd1CdFE9X9EBT2G3JJ4besjXNyfmRhYHdmhSJys84k2ULnyKWP8JvmtgqYXIZZnDK_YEieUMsBXbtsZ-IfSecyrXbEruhkMjc-2fot-BdCvFFfYlxpHKVB8TuvKU4xrDPBlY7NDSzXy7dZ0bv8niZHUSWod4fyFeY8F3xZsBpprOX97S4-3K9vvxaLm9vFpcXy9JUAKns5MD7llprDXKp2mZopTD58woIJFrFOZIw0LRWgax5BRXUtrGNgE6AreVpsTjq2oAbvYtui_FRB3T6uRHiqDHmJCbSZqgRzWCwb21FgvcVF6iE4tADWtNnrQ9HrV0MP_c5Z70J--izfS1U1zUdiKbNqPMjaszJaOeHkIM3-VraOhM8DTkSfaFqqLnk_ED4eCSYGOY50vDXJgd9WAz9bzHkH8roq_c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799690268</pqid></control><display><type>article</type><title>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Fahle, Lukas ; Petruska, Andrew J. ; Walton, Gabriel ; Brune, Jurgen F. ; Holley, Elizabeth A.</creator><creatorcontrib>Fahle, Lukas ; Petruska, Andrew J. ; Walton, Gabriel ; Brune, Jurgen F. ; Holley, Elizabeth A.</creatorcontrib><description>Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15071764</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Automation ; Change detection ; Computer applications ; Convergence ; Datasets ; Deformation ; Deformation analysis ; Field tests ; geotechnical monitoring ; Laser applications ; Lasers ; Metadata ; Methods ; Microprocessors ; Mineral industry ; Mines ; Mining ; Mining industry ; Missing data ; mobile laser scanning ; Monitoring ; octree data structures ; Octrees ; Parameter sensitivity ; Real time ; real-time computation ; Remote sensing ; Rockfall ; Scale models ; Scanning ; Sensors ; Statistical inference ; Statistics ; Underground caverns ; Underground mines</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-04, Vol.15 (7), p.1764</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</citedby><cites>FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</cites><orcidid>0000-0002-3660-7520 ; 0000-0002-5963-7941 ; 0000-0003-2070-4227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2799690268/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2799690268?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Fahle, Lukas</creatorcontrib><creatorcontrib>Petruska, Andrew J.</creatorcontrib><creatorcontrib>Walton, Gabriel</creatorcontrib><creatorcontrib>Brune, Jurgen F.</creatorcontrib><creatorcontrib>Holley, Elizabeth A.</creatorcontrib><title>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</title><title>Remote sensing (Basel, Switzerland)</title><description>Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Change detection</subject><subject>Computer applications</subject><subject>Convergence</subject><subject>Datasets</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Field tests</subject><subject>geotechnical monitoring</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Metadata</subject><subject>Methods</subject><subject>Microprocessors</subject><subject>Mineral industry</subject><subject>Mines</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Missing data</subject><subject>mobile laser scanning</subject><subject>Monitoring</subject><subject>octree data structures</subject><subject>Octrees</subject><subject>Parameter sensitivity</subject><subject>Real time</subject><subject>real-time computation</subject><subject>Remote sensing</subject><subject>Rockfall</subject><subject>Scale models</subject><subject>Scanning</subject><subject>Sensors</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Underground caverns</subject><subject>Underground mines</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUsFu1DAQjRBIVKUXvsASN6SUsZ3EybG0pay0qBK75WpN7EnqVdZeHG-hX9bfw9utAPvg0cx7T89PUxTvOZxL2cGnOPMaFFdN9ao4EaBEWYlOvP6vfluczfMG8pGSd1CdFE9X9EBT2G3JJ4besjXNyfmRhYHdmhSJys84k2ULnyKWP8JvmtgqYXIZZnDK_YEieUMsBXbtsZ-IfSecyrXbEruhkMjc-2fot-BdCvFFfYlxpHKVB8TuvKU4xrDPBlY7NDSzXy7dZ0bv8niZHUSWod4fyFeY8F3xZsBpprOX97S4-3K9vvxaLm9vFpcXy9JUAKns5MD7llprDXKp2mZopTD58woIJFrFOZIw0LRWgax5BRXUtrGNgE6AreVpsTjq2oAbvYtui_FRB3T6uRHiqDHmJCbSZqgRzWCwb21FgvcVF6iE4tADWtNnrQ9HrV0MP_c5Z70J--izfS1U1zUdiKbNqPMjaszJaOeHkIM3-VraOhM8DTkSfaFqqLnk_ED4eCSYGOY50vDXJgd9WAz9bzHkH8roq_c</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Fahle, Lukas</creator><creator>Petruska, Andrew J.</creator><creator>Walton, Gabriel</creator><creator>Brune, Jurgen F.</creator><creator>Holley, Elizabeth A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3660-7520</orcidid><orcidid>https://orcid.org/0000-0002-5963-7941</orcidid><orcidid>https://orcid.org/0000-0003-2070-4227</orcidid></search><sort><creationdate>20230401</creationdate><title>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</title><author>Fahle, Lukas ; Petruska, Andrew J. ; Walton, Gabriel ; Brune, Jurgen F. ; Holley, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Change detection</topic><topic>Computer applications</topic><topic>Convergence</topic><topic>Datasets</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Field tests</topic><topic>geotechnical monitoring</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Metadata</topic><topic>Methods</topic><topic>Microprocessors</topic><topic>Mineral industry</topic><topic>Mines</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Missing data</topic><topic>mobile laser scanning</topic><topic>Monitoring</topic><topic>octree data structures</topic><topic>Octrees</topic><topic>Parameter sensitivity</topic><topic>Real time</topic><topic>real-time computation</topic><topic>Remote sensing</topic><topic>Rockfall</topic><topic>Scale models</topic><topic>Scanning</topic><topic>Sensors</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Underground caverns</topic><topic>Underground mines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahle, Lukas</creatorcontrib><creatorcontrib>Petruska, Andrew J.</creatorcontrib><creatorcontrib>Walton, Gabriel</creatorcontrib><creatorcontrib>Brune, Jurgen F.</creatorcontrib><creatorcontrib>Holley, Elizabeth A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahle, Lukas</au><au>Petruska, Andrew J.</au><au>Walton, Gabriel</au><au>Brune, Jurgen F.</au><au>Holley, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>7</issue><spage>1764</spage><pages>1764-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Convergence and rockmass failure are significant hazards to personnel and physical assets in underground tunnels, caverns, and mines. Mobile Laser Scanning Systems (MLS) can deliver large volumes of point cloud data at a high frequency and on a large scale. However, current change detection approaches do not deliver sufficient sensitivity and precision for real-time performance on large-scale datasets. We present a novel, octree-based computational framework for intra-voxel statistical inference change detection and deformation analysis. Our approach exploits high-density MLS data to test for statistical significance for appearing objects caused by rockfall and for low-magnitude deformations, such as convergence. In field tests, our method detects rock falls with side lengths as small as 0.03 m and convergence as low as 0.01 m, or 0.5% wall-to-wall strain. When compared against a state-of-the-art multi-scale model-to-model cloud comparison (M3C2)-based method, ours is less sensitive to noisy data and parameter selection while also requiring fewer parameters. Most notably, our method is the only one tested that can perform real-time change detection on large-scale datasets on a single processor thread. Our method achieves a computational improvement of 50 times over single-threaded M3C2 while maintaining a performance scalability that is four times greater with dataset size. Our framework shows significant potential to enable accurate real-time geotechnical monitoring of large-scale underground spaces.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15071764</doi><orcidid>https://orcid.org/0000-0002-3660-7520</orcidid><orcidid>https://orcid.org/0000-0002-5963-7941</orcidid><orcidid>https://orcid.org/0000-0003-2070-4227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-04, Vol.15 (7), p.1764 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf5aacfcab8d4e21b412a72710b0adcb |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Automation Change detection Computer applications Convergence Datasets Deformation Deformation analysis Field tests geotechnical monitoring Laser applications Lasers Metadata Methods Microprocessors Mineral industry Mines Mining Mining industry Missing data mobile laser scanning Monitoring octree data structures Octrees Parameter sensitivity Real time real-time computation Remote sensing Rockfall Scale models Scanning Sensors Statistical inference Statistics Underground caverns Underground mines |
title | Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Testing%20of%20Octree-Based%20Intra-Voxel%20Statistical%20Inference%20to%20Enable%20Real-Time%20Geotechnical%20Monitoring%20of%20Large-Scale%20Underground%20Spaces%20with%20Mobile%20Laser%20Scanning%20Data&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Fahle,%20Lukas&rft.date=2023-04-01&rft.volume=15&rft.issue=7&rft.spage=1764&rft.pages=1764-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15071764&rft_dat=%3Cgale_doaj_%3EA750513118%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-93f1b8e8ddca13786f832c33170e03ad711ae2c068d7035140405d6d620920d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2799690268&rft_id=info:pmid/&rft_galeid=A750513118&rfr_iscdi=true |