Loading…
High-contrast and fast electrochromic switching enabled by plasmonics
With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several dis...
Saved in:
Published in: | Nature communications 2016-01, Vol.7 (1), p.10479-10479, Article 10479 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513 |
---|---|
cites | cdi_FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513 |
container_end_page | 10479 |
container_issue | 1 |
container_start_page | 10479 |
container_title | Nature communications |
container_volume | 7 |
creator | Xu, Ting Walter, Erich C. Agrawal, Amit Bohn, Christopher Velmurugan, Jeyavel Zhu, Wenqi Lezec, Henri J. Talin, A. Alec |
description | With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.
Slow switching speeds in device configurations have severely limited the applications of electrochromic materials. Here, Xu
et al
. use plasmonic nanoslit arrays and demonstrate fast, high-contrast, monochromatic and full-colour electrochromic switching using two different electrochromic polymers. |
doi_str_mv | 10.1038/ncomms10479 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf5ea58d598c4a1586c7614f06c0c566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf5ea58d598c4a1586c7614f06c0c566</doaj_id><sourcerecordid>3933936731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513</originalsourceid><addsrcrecordid>eNptkt9r1TAUx4sobsw9-S5FXwSt5nfTF0HGdIOBL_oc0tPTNpc2uSa9k_33pnaOOzEvOeR8-H5PvpyieEnJB0q4_ughzHOiRNTNk-KUEUErWjP-9Kg-Kc5T2pF8eEO1EM-LE6Y0FULy0-Lyyg1jBcEv0aaltL4r-7XACWGJAcYYZgdl-uUWGJ0fSvS2nbAr27tyP9k0B-8gvSie9XZKeH5_nxU_vlx-v7iqbr59vb74fFOBInKpkHEkPcGGt9BJzWTL6l7XKC2QzrZ9z5nmbWZ4yyyopqlpDV0uEYnUkvKz4nrT7YLdmX10s413Jlhn_jyEOBgbFwcTGuglWqk72WgQlkqtoFZU9EQBAalU1vq0ae0P7Ywd4BrB9Ej0cce70Qzh1oia11qyLPB6EwhpcSaBWxDGnKTPyRnKFGlUk6G39y4x_DxgWszsEuA0WY_hkAxdh1K0kSv65h90Fw7R5zxXinAuhF5d320UxJBSxP5hYkrMuhLmaCUy_er4kw_s3wXIwPsNSLnlB4xHpv_R-w0FI8GM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760334482</pqid></control><display><type>article</type><title>High-contrast and fast electrochromic switching enabled by plasmonics</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xu, Ting ; Walter, Erich C. ; Agrawal, Amit ; Bohn, Christopher ; Velmurugan, Jeyavel ; Zhu, Wenqi ; Lezec, Henri J. ; Talin, A. Alec</creator><creatorcontrib>Xu, Ting ; Walter, Erich C. ; Agrawal, Amit ; Bohn, Christopher ; Velmurugan, Jeyavel ; Zhu, Wenqi ; Lezec, Henri J. ; Talin, A. Alec ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.
Slow switching speeds in device configurations have severely limited the applications of electrochromic materials. Here, Xu
et al
. use plasmonic nanoslit arrays and demonstrate fast, high-contrast, monochromatic and full-colour electrochromic switching using two different electrochromic polymers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10479</identifier><identifier>PMID: 26814453</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/624/400/1021 ; 639/638/440 ; 639/766/119/544 ; 639/925 ; Humanities and Social Sciences ; MATERIALS SCIENCE ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2016-01, Vol.7 (1), p.10479-10479, Article 10479</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513</citedby><cites>FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1760334482/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1760334482?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26814453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1260969$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Walter, Erich C.</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><creatorcontrib>Bohn, Christopher</creatorcontrib><creatorcontrib>Velmurugan, Jeyavel</creatorcontrib><creatorcontrib>Zhu, Wenqi</creatorcontrib><creatorcontrib>Lezec, Henri J.</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>High-contrast and fast electrochromic switching enabled by plasmonics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.
Slow switching speeds in device configurations have severely limited the applications of electrochromic materials. Here, Xu
et al
. use plasmonic nanoslit arrays and demonstrate fast, high-contrast, monochromatic and full-colour electrochromic switching using two different electrochromic polymers.</description><subject>142/126</subject><subject>639/624/400/1021</subject><subject>639/638/440</subject><subject>639/766/119/544</subject><subject>639/925</subject><subject>Humanities and Social Sciences</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9r1TAUx4sobsw9-S5FXwSt5nfTF0HGdIOBL_oc0tPTNpc2uSa9k_33pnaOOzEvOeR8-H5PvpyieEnJB0q4_ughzHOiRNTNk-KUEUErWjP-9Kg-Kc5T2pF8eEO1EM-LE6Y0FULy0-Lyyg1jBcEv0aaltL4r-7XACWGJAcYYZgdl-uUWGJ0fSvS2nbAr27tyP9k0B-8gvSie9XZKeH5_nxU_vlx-v7iqbr59vb74fFOBInKpkHEkPcGGt9BJzWTL6l7XKC2QzrZ9z5nmbWZ4yyyopqlpDV0uEYnUkvKz4nrT7YLdmX10s413Jlhn_jyEOBgbFwcTGuglWqk72WgQlkqtoFZU9EQBAalU1vq0ae0P7Ywd4BrB9Ej0cce70Qzh1oia11qyLPB6EwhpcSaBWxDGnKTPyRnKFGlUk6G39y4x_DxgWszsEuA0WY_hkAxdh1K0kSv65h90Fw7R5zxXinAuhF5d320UxJBSxP5hYkrMuhLmaCUy_er4kw_s3wXIwPsNSLnlB4xHpv_R-w0FI8GM</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Xu, Ting</creator><creator>Walter, Erich C.</creator><creator>Agrawal, Amit</creator><creator>Bohn, Christopher</creator><creator>Velmurugan, Jeyavel</creator><creator>Zhu, Wenqi</creator><creator>Lezec, Henri J.</creator><creator>Talin, A. Alec</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160127</creationdate><title>High-contrast and fast electrochromic switching enabled by plasmonics</title><author>Xu, Ting ; Walter, Erich C. ; Agrawal, Amit ; Bohn, Christopher ; Velmurugan, Jeyavel ; Zhu, Wenqi ; Lezec, Henri J. ; Talin, A. Alec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>142/126</topic><topic>639/624/400/1021</topic><topic>639/638/440</topic><topic>639/766/119/544</topic><topic>639/925</topic><topic>Humanities and Social Sciences</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Walter, Erich C.</creatorcontrib><creatorcontrib>Agrawal, Amit</creatorcontrib><creatorcontrib>Bohn, Christopher</creatorcontrib><creatorcontrib>Velmurugan, Jeyavel</creatorcontrib><creatorcontrib>Zhu, Wenqi</creatorcontrib><creatorcontrib>Lezec, Henri J.</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ting</au><au>Walter, Erich C.</au><au>Agrawal, Amit</au><au>Bohn, Christopher</au><au>Velmurugan, Jeyavel</au><au>Zhu, Wenqi</au><au>Lezec, Henri J.</au><au>Talin, A. Alec</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-contrast and fast electrochromic switching enabled by plasmonics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10479</spage><epage>10479</epage><pages>10479-10479</pages><artnum>10479</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.
Slow switching speeds in device configurations have severely limited the applications of electrochromic materials. Here, Xu
et al
. use plasmonic nanoslit arrays and demonstrate fast, high-contrast, monochromatic and full-colour electrochromic switching using two different electrochromic polymers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26814453</pmid><doi>10.1038/ncomms10479</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-01, Vol.7 (1), p.10479-10479, Article 10479 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf5ea58d598c4a1586c7614f06c0c566 |
source | Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 142/126 639/624/400/1021 639/638/440 639/766/119/544 639/925 Humanities and Social Sciences MATERIALS SCIENCE multidisciplinary Science Science (multidisciplinary) |
title | High-contrast and fast electrochromic switching enabled by plasmonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-contrast%20and%20fast%20electrochromic%20switching%20enabled%20by%20plasmonics&rft.jtitle=Nature%20communications&rft.au=Xu,%20Ting&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2016-01-27&rft.volume=7&rft.issue=1&rft.spage=10479&rft.epage=10479&rft.pages=10479-10479&rft.artnum=10479&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10479&rft_dat=%3Cproquest_doaj_%3E3933936731%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-e23e0f0e93bcd5825b27f87e5ac0dabff3283b3e03b2ac699717cd2acee058513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760334482&rft_id=info:pmid/26814453&rfr_iscdi=true |