Loading…

A New Computational Algorithm for Assessing Overdispersion and Zero-Inflation in Machine Learning Count Models with Python

This article provides an overview of count data and count models, explores zero inflation, introduces likelihood ratio tests, and explains how the Vuong test can be used as a model selection criterion for assessing overdispersion. The motivation of this work was to create a Vuong test implementation...

Full description

Saved in:
Bibliographic Details
Published in:Computers (Basel) 2024-04, Vol.13 (4), p.88
Main Authors: Fávero, Luiz Paulo Lopes, Duarte, Alexandre, Santos, Helder Prado
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article provides an overview of count data and count models, explores zero inflation, introduces likelihood ratio tests, and explains how the Vuong test can be used as a model selection criterion for assessing overdispersion. The motivation of this work was to create a Vuong test implementation from scratch using the Python programming language. This implementation supports our objective of enhancing the accessibility and applicability of the Vuong test in real-world scenarios, providing a valuable contribution to the academic community, since Python did not have an implementation of this statistical test.
ISSN:2073-431X
2073-431X
DOI:10.3390/computers13040088