Loading…
Degree Approximation-Based Fuzzy Partitioning Algorithm and Applications in Wheat Production Prediction
Recently, prediction modelling has become important in data analysis. In this paper, we propose a novel algorithm to analyze the past dataset of crop yields and predict future yields using regression-based approximation of time series fuzzy data. A framework-based algorithm, which we named DAbFP (da...
Saved in:
Published in: | Symmetry (Basel) 2018-12, Vol.10 (12), p.768 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, prediction modelling has become important in data analysis. In this paper, we propose a novel algorithm to analyze the past dataset of crop yields and predict future yields using regression-based approximation of time series fuzzy data. A framework-based algorithm, which we named DAbFP (data algorithm for degree approximation-based fuzzy partitioning), is proposed to forecast wheat yield production with fuzzy time series data. Specifically, time series data were fuzzified by the simple maximum-based generalized mean function. Different cases for prediction values were evaluated based on two-set interval-based partitioning to get accurate results. The novelty of the method lies in its ability to approximate a fuzzy relation for forecasting that provides lesser complexity and higher accuracy in linear, cubic, and quadratic order than the existing methods. A lesser complexity as compared to dynamic data approximation makes it easier to find the suitable de-fuzzification process and obtain accurate predicted values. The proposed algorithm is compared with the latest existing frameworks in terms of mean square error (MSE) and average forecasting error rate (AFER). |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym10120768 |