Loading…
A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers
An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-01, Vol.20 (3), p.741 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803 |
container_end_page | |
container_issue | 3 |
container_start_page | 741 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Li, Tianshu Zhu, Lianqing Yang, Xianchao Lou, Xiaoping Yu, Liandong |
description | An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10
RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future. |
doi_str_mv | 10.3390/s20030741 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf7015df73d44143a0dec594c1130d58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf7015df73d44143a0dec594c1130d58</doaj_id><sourcerecordid>2350908277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</originalsourceid><addsrcrecordid>eNpdkk9vEzEQxVcIREvhwBdAlrjAYWH8L969IKURbSNFAlE4W7P2bLLRZh3sTSHfHoeUqOVij-Y9_fTGnqJ4zeGDlDV8TAJAglH8SXHOlVBlJQQ8fVCfFS9SWgMIKWX1vDiTArgUXJ4XzZR9ozaiG7s7YvPB0292S0MKkV1iIs_CwG7K2xVuc_11FcYwdI7N4j6N2LOrrqGY2CzgmOVf3bhi02V5HXG7ooHYAvdZflk8a7FP9Or-vih-XH3-PrspF1-u57PponRqUo9lPhoCJKxcIzwAh8a02jRKaNF6NdFKa5wYr2TlvQIBtfGTxqABWYu2AnlRzI9cH3Btt7HbYNzbgJ392whxaTGOnevJutYA17410ivFlUTw5HStHOcSvK4y69ORtd01G_KOhjFi_wj6WBm6lV2GO5vTVMocAO_uATH83FEa7aZLjvoeBwq7ZIXUUEMljMnWt_9Z12EXh_xUVmgNMk_OD9O9P7pcDClFak9hONjDFtjTFmTvm4fpT85_3y7_AAz8qiU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550365410</pqid></control><display><type>article</type><title>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Li, Tianshu ; Zhu, Lianqing ; Yang, Xianchao ; Lou, Xiaoping ; Yu, Liandong</creator><creatorcontrib>Li, Tianshu ; Zhu, Lianqing ; Yang, Xianchao ; Lou, Xiaoping ; Yu, Liandong</creatorcontrib><description>An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10
RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20030741</identifier><identifier>PMID: 32013213</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Birefringence ; Conjugation ; Crystal fibers ; Design ; Electric fields ; Graphene ; Grooves ; h-shaped optical fiber ; liquid refractive index ; Oxidation ; Parameter sensitivity ; photonic crystal fibers ; Photonic crystals ; Polarized light ; Pollution monitoring ; Refractivity ; Sensors ; Silver ; surface plasmon resonance ; Thickness ; Water pollution</subject><ispartof>Sensors (Basel, Switzerland), 2020-01, Vol.20 (3), p.741</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</citedby><cites>FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550365410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550365410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32013213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Zhu, Lianqing</creatorcontrib><creatorcontrib>Yang, Xianchao</creatorcontrib><creatorcontrib>Lou, Xiaoping</creatorcontrib><creatorcontrib>Yu, Liandong</creatorcontrib><title>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10
RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.</description><subject>Birefringence</subject><subject>Conjugation</subject><subject>Crystal fibers</subject><subject>Design</subject><subject>Electric fields</subject><subject>Graphene</subject><subject>Grooves</subject><subject>h-shaped optical fiber</subject><subject>liquid refractive index</subject><subject>Oxidation</subject><subject>Parameter sensitivity</subject><subject>photonic crystal fibers</subject><subject>Photonic crystals</subject><subject>Polarized light</subject><subject>Pollution monitoring</subject><subject>Refractivity</subject><subject>Sensors</subject><subject>Silver</subject><subject>surface plasmon resonance</subject><subject>Thickness</subject><subject>Water pollution</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9vEzEQxVcIREvhwBdAlrjAYWH8L969IKURbSNFAlE4W7P2bLLRZh3sTSHfHoeUqOVij-Y9_fTGnqJ4zeGDlDV8TAJAglH8SXHOlVBlJQQ8fVCfFS9SWgMIKWX1vDiTArgUXJ4XzZR9ozaiG7s7YvPB0292S0MKkV1iIs_CwG7K2xVuc_11FcYwdI7N4j6N2LOrrqGY2CzgmOVf3bhi02V5HXG7ooHYAvdZflk8a7FP9Or-vih-XH3-PrspF1-u57PponRqUo9lPhoCJKxcIzwAh8a02jRKaNF6NdFKa5wYr2TlvQIBtfGTxqABWYu2AnlRzI9cH3Btt7HbYNzbgJ392whxaTGOnevJutYA17410ivFlUTw5HStHOcSvK4y69ORtd01G_KOhjFi_wj6WBm6lV2GO5vTVMocAO_uATH83FEa7aZLjvoeBwq7ZIXUUEMljMnWt_9Z12EXh_xUVmgNMk_OD9O9P7pcDClFak9hONjDFtjTFmTvm4fpT85_3y7_AAz8qiU</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Li, Tianshu</creator><creator>Zhu, Lianqing</creator><creator>Yang, Xianchao</creator><creator>Lou, Xiaoping</creator><creator>Yu, Liandong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200129</creationdate><title>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</title><author>Li, Tianshu ; Zhu, Lianqing ; Yang, Xianchao ; Lou, Xiaoping ; Yu, Liandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Birefringence</topic><topic>Conjugation</topic><topic>Crystal fibers</topic><topic>Design</topic><topic>Electric fields</topic><topic>Graphene</topic><topic>Grooves</topic><topic>h-shaped optical fiber</topic><topic>liquid refractive index</topic><topic>Oxidation</topic><topic>Parameter sensitivity</topic><topic>photonic crystal fibers</topic><topic>Photonic crystals</topic><topic>Polarized light</topic><topic>Pollution monitoring</topic><topic>Refractivity</topic><topic>Sensors</topic><topic>Silver</topic><topic>surface plasmon resonance</topic><topic>Thickness</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Zhu, Lianqing</creatorcontrib><creatorcontrib>Yang, Xianchao</creatorcontrib><creatorcontrib>Lou, Xiaoping</creatorcontrib><creatorcontrib>Yu, Liandong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianshu</au><au>Zhu, Lianqing</au><au>Yang, Xianchao</au><au>Lou, Xiaoping</au><au>Yu, Liandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>741</spage><pages>741-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10
RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32013213</pmid><doi>10.3390/s20030741</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-01, Vol.20 (3), p.741 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cf7015df73d44143a0dec594c1130d58 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Birefringence Conjugation Crystal fibers Design Electric fields Graphene Grooves h-shaped optical fiber liquid refractive index Oxidation Parameter sensitivity photonic crystal fibers Photonic crystals Polarized light Pollution monitoring Refractivity Sensors Silver surface plasmon resonance Thickness Water pollution |
title | A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Refractive%20Index%20Sensor%20Based%20on%20H-Shaped%20Photonic%20Crystal%20Fibers%20Coated%20with%20Ag-Graphene%20Layers&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Tianshu&rft.date=2020-01-29&rft.volume=20&rft.issue=3&rft.spage=741&rft.pages=741-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20030741&rft_dat=%3Cproquest_doaj_%3E2350908277%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550365410&rft_id=info:pmid/32013213&rfr_iscdi=true |