Loading…

A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers

An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-01, Vol.20 (3), p.741
Main Authors: Li, Tianshu, Zhu, Lianqing, Yang, Xianchao, Lou, Xiaoping, Yu, Liandong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803
cites cdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803
container_end_page
container_issue 3
container_start_page 741
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Li, Tianshu
Zhu, Lianqing
Yang, Xianchao
Lou, Xiaoping
Yu, Liandong
description An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10 RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.
doi_str_mv 10.3390/s20030741
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cf7015df73d44143a0dec594c1130d58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cf7015df73d44143a0dec594c1130d58</doaj_id><sourcerecordid>2350908277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</originalsourceid><addsrcrecordid>eNpdkk9vEzEQxVcIREvhwBdAlrjAYWH8L969IKURbSNFAlE4W7P2bLLRZh3sTSHfHoeUqOVij-Y9_fTGnqJ4zeGDlDV8TAJAglH8SXHOlVBlJQQ8fVCfFS9SWgMIKWX1vDiTArgUXJ4XzZR9ozaiG7s7YvPB0292S0MKkV1iIs_CwG7K2xVuc_11FcYwdI7N4j6N2LOrrqGY2CzgmOVf3bhi02V5HXG7ooHYAvdZflk8a7FP9Or-vih-XH3-PrspF1-u57PponRqUo9lPhoCJKxcIzwAh8a02jRKaNF6NdFKa5wYr2TlvQIBtfGTxqABWYu2AnlRzI9cH3Btt7HbYNzbgJ392whxaTGOnevJutYA17410ivFlUTw5HStHOcSvK4y69ORtd01G_KOhjFi_wj6WBm6lV2GO5vTVMocAO_uATH83FEa7aZLjvoeBwq7ZIXUUEMljMnWt_9Z12EXh_xUVmgNMk_OD9O9P7pcDClFak9hONjDFtjTFmTvm4fpT85_3y7_AAz8qiU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550365410</pqid></control><display><type>article</type><title>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Li, Tianshu ; Zhu, Lianqing ; Yang, Xianchao ; Lou, Xiaoping ; Yu, Liandong</creator><creatorcontrib>Li, Tianshu ; Zhu, Lianqing ; Yang, Xianchao ; Lou, Xiaoping ; Yu, Liandong</creatorcontrib><description>An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10 RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20030741</identifier><identifier>PMID: 32013213</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Birefringence ; Conjugation ; Crystal fibers ; Design ; Electric fields ; Graphene ; Grooves ; h-shaped optical fiber ; liquid refractive index ; Oxidation ; Parameter sensitivity ; photonic crystal fibers ; Photonic crystals ; Polarized light ; Pollution monitoring ; Refractivity ; Sensors ; Silver ; surface plasmon resonance ; Thickness ; Water pollution</subject><ispartof>Sensors (Basel, Switzerland), 2020-01, Vol.20 (3), p.741</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</citedby><cites>FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550365410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550365410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32013213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Zhu, Lianqing</creatorcontrib><creatorcontrib>Yang, Xianchao</creatorcontrib><creatorcontrib>Lou, Xiaoping</creatorcontrib><creatorcontrib>Yu, Liandong</creatorcontrib><title>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10 RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.</description><subject>Birefringence</subject><subject>Conjugation</subject><subject>Crystal fibers</subject><subject>Design</subject><subject>Electric fields</subject><subject>Graphene</subject><subject>Grooves</subject><subject>h-shaped optical fiber</subject><subject>liquid refractive index</subject><subject>Oxidation</subject><subject>Parameter sensitivity</subject><subject>photonic crystal fibers</subject><subject>Photonic crystals</subject><subject>Polarized light</subject><subject>Pollution monitoring</subject><subject>Refractivity</subject><subject>Sensors</subject><subject>Silver</subject><subject>surface plasmon resonance</subject><subject>Thickness</subject><subject>Water pollution</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9vEzEQxVcIREvhwBdAlrjAYWH8L969IKURbSNFAlE4W7P2bLLRZh3sTSHfHoeUqOVij-Y9_fTGnqJ4zeGDlDV8TAJAglH8SXHOlVBlJQQ8fVCfFS9SWgMIKWX1vDiTArgUXJ4XzZR9ozaiG7s7YvPB0292S0MKkV1iIs_CwG7K2xVuc_11FcYwdI7N4j6N2LOrrqGY2CzgmOVf3bhi02V5HXG7ooHYAvdZflk8a7FP9Or-vih-XH3-PrspF1-u57PponRqUo9lPhoCJKxcIzwAh8a02jRKaNF6NdFKa5wYr2TlvQIBtfGTxqABWYu2AnlRzI9cH3Btt7HbYNzbgJ392whxaTGOnevJutYA17410ivFlUTw5HStHOcSvK4y69ORtd01G_KOhjFi_wj6WBm6lV2GO5vTVMocAO_uATH83FEa7aZLjvoeBwq7ZIXUUEMljMnWt_9Z12EXh_xUVmgNMk_OD9O9P7pcDClFak9hONjDFtjTFmTvm4fpT85_3y7_AAz8qiU</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Li, Tianshu</creator><creator>Zhu, Lianqing</creator><creator>Yang, Xianchao</creator><creator>Lou, Xiaoping</creator><creator>Yu, Liandong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200129</creationdate><title>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</title><author>Li, Tianshu ; Zhu, Lianqing ; Yang, Xianchao ; Lou, Xiaoping ; Yu, Liandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Birefringence</topic><topic>Conjugation</topic><topic>Crystal fibers</topic><topic>Design</topic><topic>Electric fields</topic><topic>Graphene</topic><topic>Grooves</topic><topic>h-shaped optical fiber</topic><topic>liquid refractive index</topic><topic>Oxidation</topic><topic>Parameter sensitivity</topic><topic>photonic crystal fibers</topic><topic>Photonic crystals</topic><topic>Polarized light</topic><topic>Pollution monitoring</topic><topic>Refractivity</topic><topic>Sensors</topic><topic>Silver</topic><topic>surface plasmon resonance</topic><topic>Thickness</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianshu</creatorcontrib><creatorcontrib>Zhu, Lianqing</creatorcontrib><creatorcontrib>Yang, Xianchao</creatorcontrib><creatorcontrib>Lou, Xiaoping</creatorcontrib><creatorcontrib>Yu, Liandong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianshu</au><au>Zhu, Lianqing</au><au>Yang, Xianchao</au><au>Lou, Xiaoping</au><au>Yu, Liandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>741</spage><pages>741-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10 RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32013213</pmid><doi>10.3390/s20030741</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-01, Vol.20 (3), p.741
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cf7015df73d44143a0dec594c1130d58
source Access via ProQuest (Open Access); PubMed Central
subjects Birefringence
Conjugation
Crystal fibers
Design
Electric fields
Graphene
Grooves
h-shaped optical fiber
liquid refractive index
Oxidation
Parameter sensitivity
photonic crystal fibers
Photonic crystals
Polarized light
Pollution monitoring
Refractivity
Sensors
Silver
surface plasmon resonance
Thickness
Water pollution
title A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Refractive%20Index%20Sensor%20Based%20on%20H-Shaped%20Photonic%20Crystal%20Fibers%20Coated%20with%20Ag-Graphene%20Layers&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Tianshu&rft.date=2020-01-29&rft.volume=20&rft.issue=3&rft.spage=741&rft.pages=741-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20030741&rft_dat=%3Cproquest_doaj_%3E2350908277%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-469be0aea8cb2d0010b7f57b4252fd465455a67d438dd402097d6b7a70392f803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550365410&rft_id=info:pmid/32013213&rfr_iscdi=true