Loading…

Mechanical properties and microstructure fractal analysis of refractory bauxite concrete

The surface topography analysis via fractals as a means of explanation of composite materials mechanical and microstructural characteristics has hardly been reported so far. This study proposes a method of fractal analysis and its application to refractory bauxite concrete surface tribological inves...

Full description

Saved in:
Bibliographic Details
Published in:Science of sintering 2015-09, Vol.47 (3), p.331-346
Main Authors: Terzic, A, Mitic, V V, Kocic, Lj, Radojevic, Z, Pasalic, S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The surface topography analysis via fractals as a means of explanation of composite materials mechanical and microstructural characteristics has hardly been reported so far. This study proposes a method of fractal analysis and its application to refractory bauxite concrete surface tribological investigation. Fractal dimension, profilegrams and fast Fourier transform method are introduced and supported by the adequate software for analysing contours and surface roughness, depending on the observation scale and also numerically depending on horizontal lines intercepted by the investigated profile. Also, the Richardson method and Kaye modification are applied to distinguish textured and structured aspect of grain contour geometry. Microstructural investigation was carried out using a scanning electron microscope. Using the fractals of the grains contact surfaces, a reconstruction of microstructure configuration, as grains shapes or inter-granular contacts, has been performed. Obtained results indicated that fractal analyses of contact surfaces of different shapes were very important for the prognosis of the concrete behaviour. The novel approach to the investigation of refractory concrete properties was successfully conducted, as a result introducing fractal identification as a means of composite materials performances evaluation.
ISSN:0350-820X
1820-7413
DOI:10.2298/SOS1503331T