Loading…

Development of a triple antibody sandwich enzyme-linked immunosorbent assay for cassava mosaic disease detection using a monoclonal antibody to Sri Lankan cassava mosaic virus

Cassava mosaic disease (CMD) is one of the most devastating viral diseases for cassava production in Africa and Asia. Accurate yet affordable diagnostics are one of the fundamental tools supporting successful CMD management, especially in developing countries. This study aimed to develop an antibody...

Full description

Saved in:
Bibliographic Details
Published in:Virology journal 2021-05, Vol.18 (1), p.100-100, Article 100
Main Authors: Charoenvilaisiri, Saengsoon, Seepiban, Channarong, Kumpoosiri, Mallika, Rukpratanporn, Sombat, Warin, Nuchnard, Phuangrat, Bencharong, Chitchuea, Phakamat, Siripaitoon, Sirima, Chatchawankanphanich, Orawan, Gajanandana, Oraprapai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cassava mosaic disease (CMD) is one of the most devastating viral diseases for cassava production in Africa and Asia. Accurate yet affordable diagnostics are one of the fundamental tools supporting successful CMD management, especially in developing countries. This study aimed to develop an antibody-based immunoassay for the detection of Sri Lankan cassava mosaic virus (SLCMV), the only cassava mosaic begomovirus currently causing CMD outbreaks in Southeast Asia (SEA). Monoclonal antibodies (MAbs) against the recombinant coat protein of SLCMV were generated using hybridoma technology. MAbs were characterized and used to develop a triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) for SLCMV detection in cassava leaves and stems. Assay specificity, sensitivity and efficiency for SLCMV detection was investigated and compared to those of a commercial ELISA test kit and PCR, the gold standard. A TAS-ELISA for SLCMV detection was successfully developed using the newly established MAb 29B3 and an in-house polyclonal antibody (PAb) against begomoviruses, PAb PK. The assay was able to detect SLCMV in leaves, green bark from cassava stem tips, and young leaf sprouts from stem cuttings of SLCMV-infected cassava plants without cross-reactivity to those derived from healthy cassava controls. Sensitivity comparison using serial dilutions of SLCMV-infected cassava sap extracts revealed that the assay was 256-fold more sensitive than a commercial TAS-ELISA kit and 64-fold less sensitive than PCR using previously published SLCMV-specific primers. In terms of DNA content, our assay demonstrated a limit of detection of 2.21 to 4.08 × 10 virus copies as determined by quantitative real-time PCR (qPCR). When applied to field samples (n = 490), the TAS-ELISA showed high accuracy (99.6%), specificity (100%), and sensitivity (98.2%) relative to the results obtained by the reference PCR. SLCMV infecting chaya (Cnidoscolus aconitifolius) and coral plant (Jatropha multifida) was also reported for the first time in SEA. Our findings suggest that the TAS-ELISA for SLCMV detection developed in this study can serve as an attractive tool for efficient, inexpensive and high-throughput detection of SLCMV and can be applied to CMD screening of cassava stem cuttings, large-scale surveillance, and screening for resistance.
ISSN:1743-422X
1743-422X
DOI:10.1186/s12985-021-01572-6