Loading…
The Twisting of Dome‐Like Metamaterial from Brittle to Ductile
Architected materials can exhibit mechanical properties that do not occur with ordinary solids. By integrating hierarchy and size effects, microarchitected metamaterials fabricated by two‐photon lithography with a metallic or ceramic coating can be ultrastrong but lightweight. However, the attainmen...
Saved in:
Published in: | Advanced science 2021-07, Vol.8 (13), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Architected materials can exhibit mechanical properties that do not occur with ordinary solids. By integrating hierarchy and size effects, microarchitected metamaterials fabricated by two‐photon lithography with a metallic or ceramic coating can be ultrastrong but lightweight. However, the attainment of both strength and ductility is generally mutually exclusive. Inspired by the Pantheon dome in Rome, which can withstand high load while keeping low density, microarchitected domes with a gradient helix are designed and deposited in a hierarchical nanostructured aluminum film with ultrahigh strength and considerable plasticity. Despite having a thick coating, which usually causes catastrophic collapse, the thick‐walled metallic dome shows recoverability during compression. The compressive strength increases to 73 times that of current ductile‐like microlattices, leading to the metamaterial occupying the domain of the material property space that is hitherto empty. Detailed in situ experimental and computational work reveals the graceful (noncatastrophic) failure due to the helical twisting and plastic flow in the supra‐nanomaterial. It is a promising method of suppressing brittle failure via a combination of architectural and material design. It can be used to impart enhanced functionality, making programmable stiffness, and tailored energy absorption all possible.
To explore more daring architectures and new alloys with unique combinations of material properties, a dome‐like mechanical metamaterial that compresses with a twist is designed, and the hierarchy is integrated by a layer of “supra‐nanometer‐sized dual‐phase glass‐crystal”. It expands the material property space domain, with unique combined properties of ultralight weight, ultrahigh strength, and good ductility. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202002701 |