Loading…

Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations

The epidermal growth factor receptor (EGFR) presents a crucial target for combatting cancer mortality. This study employs a suite of computational techniques, including 3D-QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis, ADME, and DFT-based analyses (MESP, HOMO, LUMO...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in pharmacology 2024-10, Vol.15, p.1399372
Main Authors: Anwar, Sirajudheen, Alanazi, Jowaher, Ahemad, Nafees, Raza, Shafaq, Chohan, Tahir Ali, Saleem, Hammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c306t-e9b844e91d80724016420758cd16c5fe1f8b034f194984e370424445553fd6063
container_end_page
container_issue
container_start_page 1399372
container_title Frontiers in pharmacology
container_volume 15
creator Anwar, Sirajudheen
Alanazi, Jowaher
Ahemad, Nafees
Raza, Shafaq
Chohan, Tahir Ali
Saleem, Hammad
description The epidermal growth factor receptor (EGFR) presents a crucial target for combatting cancer mortality. This study employs a suite of computational techniques, including 3D-QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis, ADME, and DFT-based analyses (MESP, HOMO, LUMO), supplemented by molecular dynamics simulations and MMGB/PBSA free energy calculations, to explore the binding dynamics of quinazoline derivatives with EGFR. With strong q2 and r2 values from CoMFA and CoMSIA models, our 3D- QSAR models reliably predict EGFR inhibitors' efficacy. Utilizing a potent model compound as a reference, an E-pharmacophore model was developed to sift through the eMolecules database, identifying 19 virtual screening hits based on ShapeTanimoto, ColourTanimoto, and TanimotoCombo scores. These hits, assessed via 3D- QSAR, showed pIC predictions consistent with experimental data. Our analyses elucidate key features essential for EGFR inhibition, reinforced by ADME studies that reveal favorable pharmacokinetic profiles for most compounds. Among the primary phytochemicals examined, potential EGFR inhibitors were identified. Detailed MD simulation analyses on three select ligands-1Q1, 2Q17, and VS1-demonstrated their stability and consistent interaction over 200 ns, with MM/GBSA values corroborating their docking scores and highlighting 1Q1 and VS1's superior EGFR1 affinity. These results position VS1 as an especially promising lead in EGFR1 inhibitor development, contributing valuable insights towards crafting novel, effective EGFR1 inhibitors.
doi_str_mv 10.3389/fphar.2024.1399372
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cfb0d715ac5845719fda0fa03ace471c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfb0d715ac5845719fda0fa03ace471c</doaj_id><sourcerecordid>3128325498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e9b844e91d80724016420758cd16c5fe1f8b034f194984e370424445553fd6063</originalsourceid><addsrcrecordid>eNpVkktvEzEQx1eIilZtvwAH5BscmuDn7poLqpq2VCpCFDhbE6-duNrYW9sbVL4P3xPnQdX6MtY8fjNj_6vqLcFTxlr50Q5LiFOKKZ8SJiVr6KvqiNQ1m8iW0NfP7ofVaUr3uJxNXs3fVIdMCkJbKo-qvzOj3bA00fkFehidhz-hd96grrjWkN3apPfI-Wwi6OyCT-i3y0t0eX119wkB0mE1jBk2EegLwKSMbIgIujV4bTqkNyaiXFrA8FhsDONiidhs8v3H-d0ZWruYx1KadDTGlynOEPgOfZ2h5FZjvyWnk-rAQp_M6d4eV7-uLn9efJncfru-uTi_nWiG6zwxct5ybiTpWtxQjknNKW5EqztSa2ENse0cM26J5LLlhjWYU865EILZrsY1O65udtwuwL0aoltBfFQBnNo6QlwoiNnp3iht57hriAAtWi4aIm0H2AJmoA1viC6szzvWMM5XptPG5wj9C-jLiHdLtQhrRYjgZRZaCB_2hBi2L6tWLmnT9-BNGJNi5Q8ZFWWXkkp3qTqGlKKxT30IVhu9qK1e1EYvaq-XUvTu-YRPJf_Vwf4Bnvy_QQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128325498</pqid></control><display><type>article</type><title>Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations</title><source>PubMed Central</source><creator>Anwar, Sirajudheen ; Alanazi, Jowaher ; Ahemad, Nafees ; Raza, Shafaq ; Chohan, Tahir Ali ; Saleem, Hammad</creator><creatorcontrib>Anwar, Sirajudheen ; Alanazi, Jowaher ; Ahemad, Nafees ; Raza, Shafaq ; Chohan, Tahir Ali ; Saleem, Hammad</creatorcontrib><description>The epidermal growth factor receptor (EGFR) presents a crucial target for combatting cancer mortality. This study employs a suite of computational techniques, including 3D-QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis, ADME, and DFT-based analyses (MESP, HOMO, LUMO), supplemented by molecular dynamics simulations and MMGB/PBSA free energy calculations, to explore the binding dynamics of quinazoline derivatives with EGFR. With strong q2 and r2 values from CoMFA and CoMSIA models, our 3D- QSAR models reliably predict EGFR inhibitors' efficacy. Utilizing a potent model compound as a reference, an E-pharmacophore model was developed to sift through the eMolecules database, identifying 19 virtual screening hits based on ShapeTanimoto, ColourTanimoto, and TanimotoCombo scores. These hits, assessed via 3D- QSAR, showed pIC predictions consistent with experimental data. Our analyses elucidate key features essential for EGFR inhibition, reinforced by ADME studies that reveal favorable pharmacokinetic profiles for most compounds. Among the primary phytochemicals examined, potential EGFR inhibitors were identified. Detailed MD simulation analyses on three select ligands-1Q1, 2Q17, and VS1-demonstrated their stability and consistent interaction over 200 ns, with MM/GBSA values corroborating their docking scores and highlighting 1Q1 and VS1's superior EGFR1 affinity. These results position VS1 as an especially promising lead in EGFR1 inhibitor development, contributing valuable insights towards crafting novel, effective EGFR1 inhibitors.</description><identifier>ISSN: 1663-9812</identifier><identifier>EISSN: 1663-9812</identifier><identifier>DOI: 10.3389/fphar.2024.1399372</identifier><identifier>PMID: 39512829</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>3D-QSAR ; anti-cancer ; EGFR ; in-silico ; Pharmacology ; simulations ; virtual screening</subject><ispartof>Frontiers in pharmacology, 2024-10, Vol.15, p.1399372</ispartof><rights>Copyright © 2024 Anwar, Alanazi, Ahemad, Raza, Chohan and Saleem.</rights><rights>Copyright © 2024 Anwar, Alanazi, Ahemad, Raza, Chohan and Saleem. 2024 Anwar, Alanazi, Ahemad, Raza, Chohan and Saleem</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-e9b844e91d80724016420758cd16c5fe1f8b034f194984e370424445553fd6063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540632/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540632/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39512829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anwar, Sirajudheen</creatorcontrib><creatorcontrib>Alanazi, Jowaher</creatorcontrib><creatorcontrib>Ahemad, Nafees</creatorcontrib><creatorcontrib>Raza, Shafaq</creatorcontrib><creatorcontrib>Chohan, Tahir Ali</creatorcontrib><creatorcontrib>Saleem, Hammad</creatorcontrib><title>Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations</title><title>Frontiers in pharmacology</title><addtitle>Front Pharmacol</addtitle><description>The epidermal growth factor receptor (EGFR) presents a crucial target for combatting cancer mortality. This study employs a suite of computational techniques, including 3D-QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis, ADME, and DFT-based analyses (MESP, HOMO, LUMO), supplemented by molecular dynamics simulations and MMGB/PBSA free energy calculations, to explore the binding dynamics of quinazoline derivatives with EGFR. With strong q2 and r2 values from CoMFA and CoMSIA models, our 3D- QSAR models reliably predict EGFR inhibitors' efficacy. Utilizing a potent model compound as a reference, an E-pharmacophore model was developed to sift through the eMolecules database, identifying 19 virtual screening hits based on ShapeTanimoto, ColourTanimoto, and TanimotoCombo scores. These hits, assessed via 3D- QSAR, showed pIC predictions consistent with experimental data. Our analyses elucidate key features essential for EGFR inhibition, reinforced by ADME studies that reveal favorable pharmacokinetic profiles for most compounds. Among the primary phytochemicals examined, potential EGFR inhibitors were identified. Detailed MD simulation analyses on three select ligands-1Q1, 2Q17, and VS1-demonstrated their stability and consistent interaction over 200 ns, with MM/GBSA values corroborating their docking scores and highlighting 1Q1 and VS1's superior EGFR1 affinity. These results position VS1 as an especially promising lead in EGFR1 inhibitor development, contributing valuable insights towards crafting novel, effective EGFR1 inhibitors.</description><subject>3D-QSAR</subject><subject>anti-cancer</subject><subject>EGFR</subject><subject>in-silico</subject><subject>Pharmacology</subject><subject>simulations</subject><subject>virtual screening</subject><issn>1663-9812</issn><issn>1663-9812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkktvEzEQx1eIilZtvwAH5BscmuDn7poLqpq2VCpCFDhbE6-duNrYW9sbVL4P3xPnQdX6MtY8fjNj_6vqLcFTxlr50Q5LiFOKKZ8SJiVr6KvqiNQ1m8iW0NfP7ofVaUr3uJxNXs3fVIdMCkJbKo-qvzOj3bA00fkFehidhz-hd96grrjWkN3apPfI-Wwi6OyCT-i3y0t0eX119wkB0mE1jBk2EegLwKSMbIgIujV4bTqkNyaiXFrA8FhsDONiidhs8v3H-d0ZWruYx1KadDTGlynOEPgOfZ2h5FZjvyWnk-rAQp_M6d4eV7-uLn9efJncfru-uTi_nWiG6zwxct5ybiTpWtxQjknNKW5EqztSa2ENse0cM26J5LLlhjWYU865EILZrsY1O65udtwuwL0aoltBfFQBnNo6QlwoiNnp3iht57hriAAtWi4aIm0H2AJmoA1viC6szzvWMM5XptPG5wj9C-jLiHdLtQhrRYjgZRZaCB_2hBi2L6tWLmnT9-BNGJNi5Q8ZFWWXkkp3qTqGlKKxT30IVhu9qK1e1EYvaq-XUvTu-YRPJf_Vwf4Bnvy_QQ</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Anwar, Sirajudheen</creator><creator>Alanazi, Jowaher</creator><creator>Ahemad, Nafees</creator><creator>Raza, Shafaq</creator><creator>Chohan, Tahir Ali</creator><creator>Saleem, Hammad</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241024</creationdate><title>Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations</title><author>Anwar, Sirajudheen ; Alanazi, Jowaher ; Ahemad, Nafees ; Raza, Shafaq ; Chohan, Tahir Ali ; Saleem, Hammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e9b844e91d80724016420758cd16c5fe1f8b034f194984e370424445553fd6063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D-QSAR</topic><topic>anti-cancer</topic><topic>EGFR</topic><topic>in-silico</topic><topic>Pharmacology</topic><topic>simulations</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anwar, Sirajudheen</creatorcontrib><creatorcontrib>Alanazi, Jowaher</creatorcontrib><creatorcontrib>Ahemad, Nafees</creatorcontrib><creatorcontrib>Raza, Shafaq</creatorcontrib><creatorcontrib>Chohan, Tahir Ali</creatorcontrib><creatorcontrib>Saleem, Hammad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anwar, Sirajudheen</au><au>Alanazi, Jowaher</au><au>Ahemad, Nafees</au><au>Raza, Shafaq</au><au>Chohan, Tahir Ali</au><au>Saleem, Hammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations</atitle><jtitle>Frontiers in pharmacology</jtitle><addtitle>Front Pharmacol</addtitle><date>2024-10-24</date><risdate>2024</risdate><volume>15</volume><spage>1399372</spage><pages>1399372-</pages><issn>1663-9812</issn><eissn>1663-9812</eissn><abstract>The epidermal growth factor receptor (EGFR) presents a crucial target for combatting cancer mortality. This study employs a suite of computational techniques, including 3D-QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis, ADME, and DFT-based analyses (MESP, HOMO, LUMO), supplemented by molecular dynamics simulations and MMGB/PBSA free energy calculations, to explore the binding dynamics of quinazoline derivatives with EGFR. With strong q2 and r2 values from CoMFA and CoMSIA models, our 3D- QSAR models reliably predict EGFR inhibitors' efficacy. Utilizing a potent model compound as a reference, an E-pharmacophore model was developed to sift through the eMolecules database, identifying 19 virtual screening hits based on ShapeTanimoto, ColourTanimoto, and TanimotoCombo scores. These hits, assessed via 3D- QSAR, showed pIC predictions consistent with experimental data. Our analyses elucidate key features essential for EGFR inhibition, reinforced by ADME studies that reveal favorable pharmacokinetic profiles for most compounds. Among the primary phytochemicals examined, potential EGFR inhibitors were identified. Detailed MD simulation analyses on three select ligands-1Q1, 2Q17, and VS1-demonstrated their stability and consistent interaction over 200 ns, with MM/GBSA values corroborating their docking scores and highlighting 1Q1 and VS1's superior EGFR1 affinity. These results position VS1 as an especially promising lead in EGFR1 inhibitor development, contributing valuable insights towards crafting novel, effective EGFR1 inhibitors.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>39512829</pmid><doi>10.3389/fphar.2024.1399372</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1663-9812
ispartof Frontiers in pharmacology, 2024-10, Vol.15, p.1399372
issn 1663-9812
1663-9812
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cfb0d715ac5845719fda0fa03ace471c
source PubMed Central
subjects 3D-QSAR
anti-cancer
EGFR
in-silico
Pharmacology
simulations
virtual screening
title Deciphering quinazoline derivatives' interactions with EGFR: a computational quest for advanced cancer therapy through 3D-QSAR, virtual screening, and MD simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20quinazoline%20derivatives'%20interactions%20with%20EGFR:%20a%20computational%20quest%20for%20advanced%20cancer%20therapy%20through%203D-QSAR,%20virtual%20screening,%20and%20MD%20simulations&rft.jtitle=Frontiers%20in%20pharmacology&rft.au=Anwar,%20Sirajudheen&rft.date=2024-10-24&rft.volume=15&rft.spage=1399372&rft.pages=1399372-&rft.issn=1663-9812&rft.eissn=1663-9812&rft_id=info:doi/10.3389/fphar.2024.1399372&rft_dat=%3Cproquest_doaj_%3E3128325498%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-e9b844e91d80724016420758cd16c5fe1f8b034f194984e370424445553fd6063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128325498&rft_id=info:pmid/39512829&rfr_iscdi=true