Loading…

Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX

The Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries. Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining technique, can be employed in the machining of such alloys...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering 2022, Vol.2022, p.1-9
Main Authors: Manoj, I. V., Soni, Hargovind, Narendranath, S., Mashinini, P. M., Kara, Fuat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3
cites cdi_FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3
container_end_page 9
container_issue
container_start_page 1
container_title Advances in materials science and engineering
container_volume 2022
creator Manoj, I. V.
Soni, Hargovind
Narendranath, S.
Mashinini, P. M.
Kara, Fuat
description The Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries. Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining technique, can be employed in the machining of such alloys. In the present study, different input parameters which include pulse on time, wire span, and servo gap voltage were investigated. The cutting velocity, surface roughness, recast layer, and microhardness variations were examined on the WEDMed surface. The genetic algorithm was used to optimize the cutting velocity and surface roughness, thereby improving the overall quality of the product. The highest recast layer values were recorded as 25.8 µm, and the lowest microhardness was 170 HV. Response surface methodology and artificial neural network were employed for the prediction of cutting velocity and surface roughness. Artificial neural network prediction technique was the most efficient method for the prediction of response parameters as it predicted an error percentage lesser than 6%.
doi_str_mv 10.1155/2022/5192981
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cfc10ed2aa914dd2977382aec897425e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfc10ed2aa914dd2977382aec897425e</doaj_id><sourcerecordid>2623774704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxlcIJKrSGw-wEkcI9b9d28coBFqpKVVLgZs1scepo2Sd2l5BX4DnZjcJPTKXGc389H0jfVX1lpKPlDbNOSOMnTdUM63oi-qEtkpOlBDs5fPMxevqLOc1GYrrptXipPoz_w3b0EEJsaujrxdgH0IXulV9Awm2WDDlGjpX3yR0wf7DZn0pI_QdN9GG8rRH7vrkwWJ9G_vVQ4c51_d5hG7vFvv79Pr6uPkx_7QYZaabgttdffHzTfXKwybj2bGfVvef599mF5Orr18uZ9OriRWEl4mwzku_FKikYIgt81IJzVvtQXBFcKmcZK3zyMETWBIBTdug5a2VKJwHflpdHnRdhLXZpbCF9GQiBLNfxLQykEqwGzTWW0rQMQBNhXNMS8kVA7RKD-YNDlrvDlq7FB97zMWsY5-64X3DWsalFJKIgfpwoGyKOSf0z66UmDE4MwZnjsEN-PsDPqTg4Ff4P_0XXO-Xdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623774704</pqid></control><display><type>article</type><title>Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley_OA刊</source><creator>Manoj, I. V. ; Soni, Hargovind ; Narendranath, S. ; Mashinini, P. M. ; Kara, Fuat</creator><contributor>Ares, Alicia E. ; Alicia E Ares</contributor><creatorcontrib>Manoj, I. V. ; Soni, Hargovind ; Narendranath, S. ; Mashinini, P. M. ; Kara, Fuat ; Ares, Alicia E. ; Alicia E Ares</creatorcontrib><description>The Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries. Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining technique, can be employed in the machining of such alloys. In the present study, different input parameters which include pulse on time, wire span, and servo gap voltage were investigated. The cutting velocity, surface roughness, recast layer, and microhardness variations were examined on the WEDMed surface. The genetic algorithm was used to optimize the cutting velocity and surface roughness, thereby improving the overall quality of the product. The highest recast layer values were recorded as 25.8 µm, and the lowest microhardness was 170 HV. Response surface methodology and artificial neural network were employed for the prediction of cutting velocity and surface roughness. Artificial neural network prediction technique was the most efficient method for the prediction of response parameters as it predicted an error percentage lesser than 6%.</description><identifier>ISSN: 1687-8434</identifier><identifier>EISSN: 1687-8442</identifier><identifier>DOI: 10.1155/2022/5192981</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Aerospace industry ; Alloys ; Artificial neural networks ; Dimensional analysis ; Electric discharge machining ; Genetic algorithms ; Investigations ; Microhardness ; Nickel base alloys ; Optimization ; Predictions ; Process parameters ; Response surface methodology ; Superalloys ; Surface roughness ; Variance analysis ; Velocity</subject><ispartof>Advances in materials science and engineering, 2022, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 I. V. Manoj et al.</rights><rights>Copyright © 2022 I. V. Manoj et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3</citedby><cites>FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3</cites><orcidid>0000-0003-1556-3896 ; 0000-0003-1552-1602 ; 0000-0002-3811-3081 ; 0000-0001-7575-0699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2623774704/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2623774704?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,25751,27921,27922,27923,37010,44588,74896</link.rule.ids></links><search><contributor>Ares, Alicia E.</contributor><contributor>Alicia E Ares</contributor><creatorcontrib>Manoj, I. V.</creatorcontrib><creatorcontrib>Soni, Hargovind</creatorcontrib><creatorcontrib>Narendranath, S.</creatorcontrib><creatorcontrib>Mashinini, P. M.</creatorcontrib><creatorcontrib>Kara, Fuat</creatorcontrib><title>Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX</title><title>Advances in materials science and engineering</title><description>The Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries. Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining technique, can be employed in the machining of such alloys. In the present study, different input parameters which include pulse on time, wire span, and servo gap voltage were investigated. The cutting velocity, surface roughness, recast layer, and microhardness variations were examined on the WEDMed surface. The genetic algorithm was used to optimize the cutting velocity and surface roughness, thereby improving the overall quality of the product. The highest recast layer values were recorded as 25.8 µm, and the lowest microhardness was 170 HV. Response surface methodology and artificial neural network were employed for the prediction of cutting velocity and surface roughness. Artificial neural network prediction technique was the most efficient method for the prediction of response parameters as it predicted an error percentage lesser than 6%.</description><subject>Aerospace industry</subject><subject>Alloys</subject><subject>Artificial neural networks</subject><subject>Dimensional analysis</subject><subject>Electric discharge machining</subject><subject>Genetic algorithms</subject><subject>Investigations</subject><subject>Microhardness</subject><subject>Nickel base alloys</subject><subject>Optimization</subject><subject>Predictions</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Superalloys</subject><subject>Surface roughness</subject><subject>Variance analysis</subject><subject>Velocity</subject><issn>1687-8434</issn><issn>1687-8442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9uEzEQxlcIJKrSGw-wEkcI9b9d28coBFqpKVVLgZs1scepo2Sd2l5BX4DnZjcJPTKXGc389H0jfVX1lpKPlDbNOSOMnTdUM63oi-qEtkpOlBDs5fPMxevqLOc1GYrrptXipPoz_w3b0EEJsaujrxdgH0IXulV9Awm2WDDlGjpX3yR0wf7DZn0pI_QdN9GG8rRH7vrkwWJ9G_vVQ4c51_d5hG7vFvv79Pr6uPkx_7QYZaabgttdffHzTfXKwybj2bGfVvef599mF5Orr18uZ9OriRWEl4mwzku_FKikYIgt81IJzVvtQXBFcKmcZK3zyMETWBIBTdug5a2VKJwHflpdHnRdhLXZpbCF9GQiBLNfxLQykEqwGzTWW0rQMQBNhXNMS8kVA7RKD-YNDlrvDlq7FB97zMWsY5-64X3DWsalFJKIgfpwoGyKOSf0z66UmDE4MwZnjsEN-PsDPqTg4Ff4P_0XXO-Xdg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Manoj, I. V.</creator><creator>Soni, Hargovind</creator><creator>Narendranath, S.</creator><creator>Mashinini, P. M.</creator><creator>Kara, Fuat</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1556-3896</orcidid><orcidid>https://orcid.org/0000-0003-1552-1602</orcidid><orcidid>https://orcid.org/0000-0002-3811-3081</orcidid><orcidid>https://orcid.org/0000-0001-7575-0699</orcidid></search><sort><creationdate>2022</creationdate><title>Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX</title><author>Manoj, I. V. ; Soni, Hargovind ; Narendranath, S. ; Mashinini, P. M. ; Kara, Fuat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace industry</topic><topic>Alloys</topic><topic>Artificial neural networks</topic><topic>Dimensional analysis</topic><topic>Electric discharge machining</topic><topic>Genetic algorithms</topic><topic>Investigations</topic><topic>Microhardness</topic><topic>Nickel base alloys</topic><topic>Optimization</topic><topic>Predictions</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Superalloys</topic><topic>Surface roughness</topic><topic>Variance analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manoj, I. V.</creatorcontrib><creatorcontrib>Soni, Hargovind</creatorcontrib><creatorcontrib>Narendranath, S.</creatorcontrib><creatorcontrib>Mashinini, P. M.</creatorcontrib><creatorcontrib>Kara, Fuat</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manoj, I. V.</au><au>Soni, Hargovind</au><au>Narendranath, S.</au><au>Mashinini, P. M.</au><au>Kara, Fuat</au><au>Ares, Alicia E.</au><au>Alicia E Ares</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX</atitle><jtitle>Advances in materials science and engineering</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-8434</issn><eissn>1687-8442</eissn><abstract>The Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries. Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining technique, can be employed in the machining of such alloys. In the present study, different input parameters which include pulse on time, wire span, and servo gap voltage were investigated. The cutting velocity, surface roughness, recast layer, and microhardness variations were examined on the WEDMed surface. The genetic algorithm was used to optimize the cutting velocity and surface roughness, thereby improving the overall quality of the product. The highest recast layer values were recorded as 25.8 µm, and the lowest microhardness was 170 HV. Response surface methodology and artificial neural network were employed for the prediction of cutting velocity and surface roughness. Artificial neural network prediction technique was the most efficient method for the prediction of response parameters as it predicted an error percentage lesser than 6%.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5192981</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1556-3896</orcidid><orcidid>https://orcid.org/0000-0003-1552-1602</orcidid><orcidid>https://orcid.org/0000-0002-3811-3081</orcidid><orcidid>https://orcid.org/0000-0001-7575-0699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8434
ispartof Advances in materials science and engineering, 2022, Vol.2022, p.1-9
issn 1687-8434
1687-8442
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cfc10ed2aa914dd2977382aec897425e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley_OA刊
subjects Aerospace industry
Alloys
Artificial neural networks
Dimensional analysis
Electric discharge machining
Genetic algorithms
Investigations
Microhardness
Nickel base alloys
Optimization
Predictions
Process parameters
Response surface methodology
Superalloys
Surface roughness
Variance analysis
Velocity
title Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examination%20of%20Machining%20Parameters%20and%20Prediction%20of%20Cutting%20Velocity%20and%20Surface%20Roughness%20Using%20RSM%20and%20ANN%20Using%20WEDM%20of%20Altemp%20HX&rft.jtitle=Advances%20in%20materials%20science%20and%20engineering&rft.au=Manoj,%20I.%20V.&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-8434&rft.eissn=1687-8442&rft_id=info:doi/10.1155/2022/5192981&rft_dat=%3Cproquest_doaj_%3E2623774704%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-4cdf7fb4e8742ee62f7849369fa4380eb8d726dfe3af0ab04a565ec36c7e4dfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623774704&rft_id=info:pmid/&rfr_iscdi=true