Loading…

Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD

Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2020-01, Vol.12 (1), p.270
Main Authors: Huang, Kuang-Tzu, Chen, Kuang-Den, Hsu, Li-Wen, Kung, Chao-Pin, Li, Shu-Rong, Chen, Chien-Chih, Chiu, King-Wah, Goto, Shigeru, Chen, Chao-Long
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13
cites cdi_FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13
container_end_page
container_issue 1
container_start_page 270
container_title Nutrients
container_volume 12
creator Huang, Kuang-Tzu
Chen, Kuang-Den
Hsu, Li-Wen
Kung, Chao-Pin
Li, Shu-Rong
Chen, Chien-Chih
Chiu, King-Wah
Goto, Shigeru
Chen, Chao-Long
description Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites can induce chronic inflammation, ultimately triggering disease progression. Pigment epithelium-derived factor (PEDF) is a secreted, multifunctional glycoprotein with lipid metabolic activities. PEDF promotes lipolysis through binding to adipose triglyceride lipase (ATGL), a key enzyme for triglyceride breakdown. In the current study, we aimed to delineate how changes in PEDF expression affect hepatic lipid accumulation. Our data revealed that hepatic PEDF was downregulated in a mouse NAFLD model. We further showed that decreased PEDF levels in hepatocytes in vitro resulted in elevated fatty acid uptake and lipid droplet formation, with concomitant upregulation of fatty acid transport proteins CD36 and fatty acid binding protein 1 (FABP1). RNA sequencing analysis of PEDF knocked down hepatocytes revealed an alteration in gene expression profile toward lipid accumulation. Additionally, decreased PEDF promotes mobilization of fatty acids, an observation distinct from blocking ATGL activity. Taken together, our data suggest that hepatic PEDF downregulation causes molecular changes that favor triglyceride accumulation, which may further lead to NAFLD progression.
doi_str_mv 10.3390/nu12010270
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cfc3c848219946d080008184944b20f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfc3c848219946d080008184944b20f4</doaj_id><sourcerecordid>2414103544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13</originalsourceid><addsrcrecordid>eNpdks1u1DAURiMEolXphgdAltggpCn-S2xvkEadhlYawSzo2nLsm5kMSRxsp1LfHg_TlhZvbN17dPT52kXxnuALxhT-Ms6EYoKpwK-KU4oFXVQVZ6-fnU-K8xj3-LAEFhV7W5wwoipZleVpsV-BDWAiOLS5WtVoE_zgE0R0DZNJnUW1SekeLW3n0O2UzC9AZnRo3U25sAp-6iGh2ochw35E3YjSDtDGpJ3fwgixi8i36PuyXq_eFW9a00c4f9jPitv66ufl9WL949vN5XK9sFzQtBAECOY5q3HSYSGlYFXVtlYBaaRyglJwDZW2UWBIKRgIrHJPMt7QUgJhZ8XN0eu82espdIMJ99qbTv8t-LDVJuSr9aBta5mVXFKiFK8clnlGkkiueJbhlmfX16NrmpsBnIUxBdO_kL7sjN1Ob_2dFpiosiqz4NODIPjfM8Skhy5a6Hszgp-jpoxzSjkWIqMf_0P3fg5jHpWmnHCCWckPiT4fKRt8jAHapzAE68OP0P9-RIY_PI__hD6-P_sDS8atvw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414103544</pqid></control><display><type>article</type><title>Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><creator>Huang, Kuang-Tzu ; Chen, Kuang-Den ; Hsu, Li-Wen ; Kung, Chao-Pin ; Li, Shu-Rong ; Chen, Chien-Chih ; Chiu, King-Wah ; Goto, Shigeru ; Chen, Chao-Long</creator><creatorcontrib>Huang, Kuang-Tzu ; Chen, Kuang-Den ; Hsu, Li-Wen ; Kung, Chao-Pin ; Li, Shu-Rong ; Chen, Chien-Chih ; Chiu, King-Wah ; Goto, Shigeru ; Chen, Chao-Long</creatorcontrib><description>Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites can induce chronic inflammation, ultimately triggering disease progression. Pigment epithelium-derived factor (PEDF) is a secreted, multifunctional glycoprotein with lipid metabolic activities. PEDF promotes lipolysis through binding to adipose triglyceride lipase (ATGL), a key enzyme for triglyceride breakdown. In the current study, we aimed to delineate how changes in PEDF expression affect hepatic lipid accumulation. Our data revealed that hepatic PEDF was downregulated in a mouse NAFLD model. We further showed that decreased PEDF levels in hepatocytes in vitro resulted in elevated fatty acid uptake and lipid droplet formation, with concomitant upregulation of fatty acid transport proteins CD36 and fatty acid binding protein 1 (FABP1). RNA sequencing analysis of PEDF knocked down hepatocytes revealed an alteration in gene expression profile toward lipid accumulation. Additionally, decreased PEDF promotes mobilization of fatty acids, an observation distinct from blocking ATGL activity. Taken together, our data suggest that hepatic PEDF downregulation causes molecular changes that favor triglyceride accumulation, which may further lead to NAFLD progression.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu12010270</identifier><identifier>PMID: 31968655</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accumulation ; adipose triglyceride lipase ; Antigens ; cd36 ; CD36 antigen ; Cell culture ; Cirrhosis ; Diabetes ; Droplets ; Epithelium ; Fatty acid-binding protein ; Fatty acids ; Fatty liver ; Fibrosis ; Gene expression ; Hepatocytes ; Lipase ; lipid droplets ; Lipids ; Lipolysis ; Liver ; Liver cirrhosis ; Liver diseases ; Metabolism ; Metabolites ; Obesity ; Pigment epithelium-derived factor ; Protein transport ; Proteins ; Sequence analysis ; Steatosis ; Triglycerides</subject><ispartof>Nutrients, 2020-01, Vol.12 (1), p.270</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13</citedby><cites>FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13</cites><orcidid>0000-0003-2108-6539 ; 0000-0002-5902-3130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414103544/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414103544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31968655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Kuang-Tzu</creatorcontrib><creatorcontrib>Chen, Kuang-Den</creatorcontrib><creatorcontrib>Hsu, Li-Wen</creatorcontrib><creatorcontrib>Kung, Chao-Pin</creatorcontrib><creatorcontrib>Li, Shu-Rong</creatorcontrib><creatorcontrib>Chen, Chien-Chih</creatorcontrib><creatorcontrib>Chiu, King-Wah</creatorcontrib><creatorcontrib>Goto, Shigeru</creatorcontrib><creatorcontrib>Chen, Chao-Long</creatorcontrib><title>Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites can induce chronic inflammation, ultimately triggering disease progression. Pigment epithelium-derived factor (PEDF) is a secreted, multifunctional glycoprotein with lipid metabolic activities. PEDF promotes lipolysis through binding to adipose triglyceride lipase (ATGL), a key enzyme for triglyceride breakdown. In the current study, we aimed to delineate how changes in PEDF expression affect hepatic lipid accumulation. Our data revealed that hepatic PEDF was downregulated in a mouse NAFLD model. We further showed that decreased PEDF levels in hepatocytes in vitro resulted in elevated fatty acid uptake and lipid droplet formation, with concomitant upregulation of fatty acid transport proteins CD36 and fatty acid binding protein 1 (FABP1). RNA sequencing analysis of PEDF knocked down hepatocytes revealed an alteration in gene expression profile toward lipid accumulation. Additionally, decreased PEDF promotes mobilization of fatty acids, an observation distinct from blocking ATGL activity. Taken together, our data suggest that hepatic PEDF downregulation causes molecular changes that favor triglyceride accumulation, which may further lead to NAFLD progression.</description><subject>Accumulation</subject><subject>adipose triglyceride lipase</subject><subject>Antigens</subject><subject>cd36</subject><subject>CD36 antigen</subject><subject>Cell culture</subject><subject>Cirrhosis</subject><subject>Diabetes</subject><subject>Droplets</subject><subject>Epithelium</subject><subject>Fatty acid-binding protein</subject><subject>Fatty acids</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Hepatocytes</subject><subject>Lipase</subject><subject>lipid droplets</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Liver</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Obesity</subject><subject>Pigment epithelium-derived factor</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Sequence analysis</subject><subject>Steatosis</subject><subject>Triglycerides</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u1DAURiMEolXphgdAltggpCn-S2xvkEadhlYawSzo2nLsm5kMSRxsp1LfHg_TlhZvbN17dPT52kXxnuALxhT-Ms6EYoKpwK-KU4oFXVQVZ6-fnU-K8xj3-LAEFhV7W5wwoipZleVpsV-BDWAiOLS5WtVoE_zgE0R0DZNJnUW1SekeLW3n0O2UzC9AZnRo3U25sAp-6iGh2ochw35E3YjSDtDGpJ3fwgixi8i36PuyXq_eFW9a00c4f9jPitv66ufl9WL949vN5XK9sFzQtBAECOY5q3HSYSGlYFXVtlYBaaRyglJwDZW2UWBIKRgIrHJPMt7QUgJhZ8XN0eu82espdIMJ99qbTv8t-LDVJuSr9aBta5mVXFKiFK8clnlGkkiueJbhlmfX16NrmpsBnIUxBdO_kL7sjN1Ob_2dFpiosiqz4NODIPjfM8Skhy5a6Hszgp-jpoxzSjkWIqMf_0P3fg5jHpWmnHCCWckPiT4fKRt8jAHapzAE68OP0P9-RIY_PI__hD6-P_sDS8atvw</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Huang, Kuang-Tzu</creator><creator>Chen, Kuang-Den</creator><creator>Hsu, Li-Wen</creator><creator>Kung, Chao-Pin</creator><creator>Li, Shu-Rong</creator><creator>Chen, Chien-Chih</creator><creator>Chiu, King-Wah</creator><creator>Goto, Shigeru</creator><creator>Chen, Chao-Long</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2108-6539</orcidid><orcidid>https://orcid.org/0000-0002-5902-3130</orcidid></search><sort><creationdate>20200120</creationdate><title>Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD</title><author>Huang, Kuang-Tzu ; Chen, Kuang-Den ; Hsu, Li-Wen ; Kung, Chao-Pin ; Li, Shu-Rong ; Chen, Chien-Chih ; Chiu, King-Wah ; Goto, Shigeru ; Chen, Chao-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>adipose triglyceride lipase</topic><topic>Antigens</topic><topic>cd36</topic><topic>CD36 antigen</topic><topic>Cell culture</topic><topic>Cirrhosis</topic><topic>Diabetes</topic><topic>Droplets</topic><topic>Epithelium</topic><topic>Fatty acid-binding protein</topic><topic>Fatty acids</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Hepatocytes</topic><topic>Lipase</topic><topic>lipid droplets</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Liver</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Obesity</topic><topic>Pigment epithelium-derived factor</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Sequence analysis</topic><topic>Steatosis</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kuang-Tzu</creatorcontrib><creatorcontrib>Chen, Kuang-Den</creatorcontrib><creatorcontrib>Hsu, Li-Wen</creatorcontrib><creatorcontrib>Kung, Chao-Pin</creatorcontrib><creatorcontrib>Li, Shu-Rong</creatorcontrib><creatorcontrib>Chen, Chien-Chih</creatorcontrib><creatorcontrib>Chiu, King-Wah</creatorcontrib><creatorcontrib>Goto, Shigeru</creatorcontrib><creatorcontrib>Chen, Chao-Long</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kuang-Tzu</au><au>Chen, Kuang-Den</au><au>Hsu, Li-Wen</au><au>Kung, Chao-Pin</au><au>Li, Shu-Rong</au><au>Chen, Chien-Chih</au><au>Chiu, King-Wah</au><au>Goto, Shigeru</au><au>Chen, Chao-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2020-01-20</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>270</spage><pages>270-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites can induce chronic inflammation, ultimately triggering disease progression. Pigment epithelium-derived factor (PEDF) is a secreted, multifunctional glycoprotein with lipid metabolic activities. PEDF promotes lipolysis through binding to adipose triglyceride lipase (ATGL), a key enzyme for triglyceride breakdown. In the current study, we aimed to delineate how changes in PEDF expression affect hepatic lipid accumulation. Our data revealed that hepatic PEDF was downregulated in a mouse NAFLD model. We further showed that decreased PEDF levels in hepatocytes in vitro resulted in elevated fatty acid uptake and lipid droplet formation, with concomitant upregulation of fatty acid transport proteins CD36 and fatty acid binding protein 1 (FABP1). RNA sequencing analysis of PEDF knocked down hepatocytes revealed an alteration in gene expression profile toward lipid accumulation. Additionally, decreased PEDF promotes mobilization of fatty acids, an observation distinct from blocking ATGL activity. Taken together, our data suggest that hepatic PEDF downregulation causes molecular changes that favor triglyceride accumulation, which may further lead to NAFLD progression.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31968655</pmid><doi>10.3390/nu12010270</doi><orcidid>https://orcid.org/0000-0003-2108-6539</orcidid><orcidid>https://orcid.org/0000-0002-5902-3130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2020-01, Vol.12 (1), p.270
issn 2072-6643
2072-6643
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_cfc3c848219946d080008184944b20f4
source PubMed (Medline); Access via ProQuest (Open Access)
subjects Accumulation
adipose triglyceride lipase
Antigens
cd36
CD36 antigen
Cell culture
Cirrhosis
Diabetes
Droplets
Epithelium
Fatty acid-binding protein
Fatty acids
Fatty liver
Fibrosis
Gene expression
Hepatocytes
Lipase
lipid droplets
Lipids
Lipolysis
Liver
Liver cirrhosis
Liver diseases
Metabolism
Metabolites
Obesity
Pigment epithelium-derived factor
Protein transport
Proteins
Sequence analysis
Steatosis
Triglycerides
title Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decreased%20PEDF%20Promotes%20Hepatic%20Fatty%20Acid%20Uptake%20and%20Lipid%20Droplet%20Formation%20in%20the%20Pathogenesis%20of%20NAFLD&rft.jtitle=Nutrients&rft.au=Huang,%20Kuang-Tzu&rft.date=2020-01-20&rft.volume=12&rft.issue=1&rft.spage=270&rft.pages=270-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu12010270&rft_dat=%3Cproquest_doaj_%3E2414103544%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-71e104007ad8d07887366ffc9e1b89d722edb28cb9ea1573e7099e1834b258e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414103544&rft_id=info:pmid/31968655&rfr_iscdi=true