Loading…
Simulation calculation of 3D electric field and natural flashover analysis of ice‐covered silicone rubber insulator
The effects of uneven icing, number of icicles, inclination angle of icicle, ice pallets and arc ignition on the electric field are ignored for the two‐dimensional axisymmetric model of ice‐covered insulator. Therefore, a 3D simulation model was developed in this paper. The average electric field st...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2023-03, Vol.17 (5), p.1166-1178 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3 |
container_end_page | 1178 |
container_issue | 5 |
container_start_page | 1166 |
container_title | IET generation, transmission & distribution |
container_volume | 17 |
creator | Dong, Bingbing Hu, Yuyao Yin, Fanghui Jiang, Xingliang |
description | The effects of uneven icing, number of icicles, inclination angle of icicle, ice pallets and arc ignition on the electric field are ignored for the two‐dimensional axisymmetric model of ice‐covered insulator. Therefore, a 3D simulation model was developed in this paper. The average electric field strength of air gap (Eav) and maximum field strength of icicle tip (Emax) were determined to characterize the influence of various factors on the electric field distortion degree. The results show that compared with the insulator without ice and with a dry ice, the supply voltage is almost entirely applied to all icicle air gaps for a wet ice‐covered insulator. Eav is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle. Emax raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. Based on the simulation analysis and natural icing test, the applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.
The average electric field strength of air gap (Eav) is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle, and maximum field strength of icicle tip (Emax) raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. The applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover. |
doi_str_mv | 10.1049/gtd2.12724 |
format | article |
fullrecord | <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_cfcde6dc1b1b45b6a932616a31148621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfcde6dc1b1b45b6a932616a31148621</doaj_id><sourcerecordid>GTD212724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3</originalsourceid><addsrcrecordid>eNp9kL1OxDAQhCMEEr8NT-Aa6SAbO05SIv4lJAqO2tqsN4eRiZGdA13HI_CMPAkJB5RUOxrNfNJOlh1Cfgy5ak4Wgy2OoagKtZHtQFXCrNZNufmn62o7203pKc_LUqtqJ1veu-elx8GFXhB6-tWhE_JcsGcaoiPROfZWYG9Fj8Myohedx_QYXjmOLvpVcmnqOOLP9w-afLYiOe8o9Czism3HpOvTxA9xP9vq0Cc--Ll72cPlxfzsenZ7d3Vzdno7I1mVaga1Io1MeS21LRpr82p8MgfJ1GFpS6w1KyjqqqFGQlsp2ZKWyJ0GVdfcyr3sZs21AZ_MS3TPGFcmoDPfRogLg3Fw5NlQR5a1JWihVWWrsZGFBo0SRpYuYGQdrVkUQ0qRuz8e5GYa30zjm-_xxzCsw2_O8-qfpLmanxfrzheKm4lK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation calculation of 3D electric field and natural flashover analysis of ice‐covered silicone rubber insulator</title><source>IET Digital Library</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Dong, Bingbing ; Hu, Yuyao ; Yin, Fanghui ; Jiang, Xingliang</creator><creatorcontrib>Dong, Bingbing ; Hu, Yuyao ; Yin, Fanghui ; Jiang, Xingliang</creatorcontrib><description>The effects of uneven icing, number of icicles, inclination angle of icicle, ice pallets and arc ignition on the electric field are ignored for the two‐dimensional axisymmetric model of ice‐covered insulator. Therefore, a 3D simulation model was developed in this paper. The average electric field strength of air gap (Eav) and maximum field strength of icicle tip (Emax) were determined to characterize the influence of various factors on the electric field distortion degree. The results show that compared with the insulator without ice and with a dry ice, the supply voltage is almost entirely applied to all icicle air gaps for a wet ice‐covered insulator. Eav is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle. Emax raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. Based on the simulation analysis and natural icing test, the applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.
The average electric field strength of air gap (Eav) is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle, and maximum field strength of icicle tip (Emax) raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. The applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.</description><identifier>ISSN: 1751-8687</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/gtd2.12724</identifier><language>eng</language><publisher>Wiley</publisher><subject>discharges (electric) ; flashover ; insulators</subject><ispartof>IET generation, transmission & distribution, 2023-03, Vol.17 (5), p.1166-1178</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3</citedby><cites>FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fgtd2.12724$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fgtd2.12724$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Dong, Bingbing</creatorcontrib><creatorcontrib>Hu, Yuyao</creatorcontrib><creatorcontrib>Yin, Fanghui</creatorcontrib><creatorcontrib>Jiang, Xingliang</creatorcontrib><title>Simulation calculation of 3D electric field and natural flashover analysis of ice‐covered silicone rubber insulator</title><title>IET generation, transmission & distribution</title><description>The effects of uneven icing, number of icicles, inclination angle of icicle, ice pallets and arc ignition on the electric field are ignored for the two‐dimensional axisymmetric model of ice‐covered insulator. Therefore, a 3D simulation model was developed in this paper. The average electric field strength of air gap (Eav) and maximum field strength of icicle tip (Emax) were determined to characterize the influence of various factors on the electric field distortion degree. The results show that compared with the insulator without ice and with a dry ice, the supply voltage is almost entirely applied to all icicle air gaps for a wet ice‐covered insulator. Eav is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle. Emax raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. Based on the simulation analysis and natural icing test, the applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.
The average electric field strength of air gap (Eav) is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle, and maximum field strength of icicle tip (Emax) raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. The applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.</description><subject>discharges (electric)</subject><subject>flashover</subject><subject>insulators</subject><issn>1751-8687</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kL1OxDAQhCMEEr8NT-Aa6SAbO05SIv4lJAqO2tqsN4eRiZGdA13HI_CMPAkJB5RUOxrNfNJOlh1Cfgy5ak4Wgy2OoagKtZHtQFXCrNZNufmn62o7203pKc_LUqtqJ1veu-elx8GFXhB6-tWhE_JcsGcaoiPROfZWYG9Fj8Myohedx_QYXjmOLvpVcmnqOOLP9w-afLYiOe8o9Czism3HpOvTxA9xP9vq0Cc--Ll72cPlxfzsenZ7d3Vzdno7I1mVaga1Io1MeS21LRpr82p8MgfJ1GFpS6w1KyjqqqFGQlsp2ZKWyJ0GVdfcyr3sZs21AZ_MS3TPGFcmoDPfRogLg3Fw5NlQR5a1JWihVWWrsZGFBo0SRpYuYGQdrVkUQ0qRuz8e5GYa30zjm-_xxzCsw2_O8-qfpLmanxfrzheKm4lK</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Dong, Bingbing</creator><creator>Hu, Yuyao</creator><creator>Yin, Fanghui</creator><creator>Jiang, Xingliang</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202303</creationdate><title>Simulation calculation of 3D electric field and natural flashover analysis of ice‐covered silicone rubber insulator</title><author>Dong, Bingbing ; Hu, Yuyao ; Yin, Fanghui ; Jiang, Xingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>discharges (electric)</topic><topic>flashover</topic><topic>insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bingbing</creatorcontrib><creatorcontrib>Hu, Yuyao</creatorcontrib><creatorcontrib>Yin, Fanghui</creatorcontrib><creatorcontrib>Jiang, Xingliang</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET generation, transmission & distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bingbing</au><au>Hu, Yuyao</au><au>Yin, Fanghui</au><au>Jiang, Xingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation calculation of 3D electric field and natural flashover analysis of ice‐covered silicone rubber insulator</atitle><jtitle>IET generation, transmission & distribution</jtitle><date>2023-03</date><risdate>2023</risdate><volume>17</volume><issue>5</issue><spage>1166</spage><epage>1178</epage><pages>1166-1178</pages><issn>1751-8687</issn><eissn>1751-8695</eissn><abstract>The effects of uneven icing, number of icicles, inclination angle of icicle, ice pallets and arc ignition on the electric field are ignored for the two‐dimensional axisymmetric model of ice‐covered insulator. Therefore, a 3D simulation model was developed in this paper. The average electric field strength of air gap (Eav) and maximum field strength of icicle tip (Emax) were determined to characterize the influence of various factors on the electric field distortion degree. The results show that compared with the insulator without ice and with a dry ice, the supply voltage is almost entirely applied to all icicle air gaps for a wet ice‐covered insulator. Eav is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle. Emax raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. Based on the simulation analysis and natural icing test, the applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.
The average electric field strength of air gap (Eav) is independent of icicle diameter and icicle number but increases with the increment of icicle length and icicle inclination angle, and maximum field strength of icicle tip (Emax) raises with the increase of icicle length, icicle number, icicle inclination angle and icicle diameter. As the source of electric field distortion, the ice pallets on the surface of the sheds rise the field strength of air gap. The applied voltage is redistributed in the remaining air gaps when an arc occurs in the gap near the high‐voltage terminal, thereby causing the subsequent flashover.</abstract><pub>Wiley</pub><doi>10.1049/gtd2.12724</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8687 |
ispartof | IET generation, transmission & distribution, 2023-03, Vol.17 (5), p.1166-1178 |
issn | 1751-8687 1751-8695 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_cfcde6dc1b1b45b6a932616a31148621 |
source | IET Digital Library; Open Access: Wiley-Blackwell Open Access Journals |
subjects | discharges (electric) flashover insulators |
title | Simulation calculation of 3D electric field and natural flashover analysis of ice‐covered silicone rubber insulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20calculation%20of%203D%20electric%20field%20and%20natural%20flashover%20analysis%20of%20ice%E2%80%90covered%20silicone%20rubber%20insulator&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Dong,%20Bingbing&rft.date=2023-03&rft.volume=17&rft.issue=5&rft.spage=1166&rft.epage=1178&rft.pages=1166-1178&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/gtd2.12724&rft_dat=%3Cwiley_doaj_%3EGTD212724%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3754-184c6aec0836d29dd07049013ecfa5d5a86e412879c931b743bc63aef61488eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |