Loading…

Gap-free global annual soil moisture: 15 km grids for 1991–2018

Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains > 40 yea...

Full description

Saved in:
Bibliographic Details
Published in:Earth system science data 2021-04, Vol.13 (4), p.1711-1735
Main Authors: Guevara, Mario, Taufer, Michela, Vargas, Rodrigo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a soil moisture pattern recognition framework to increase the spatial resolution and fill gaps of the ESA-CCI (European Space Agency Climate Change Initiative v4.5) soil moisture dataset, which contains > 40 years of satellite soil moisture global grids with a spatial resolution of ∼ 27 km. We use terrain parameters coupled with bioclimatic and soil type information to predict finer-grained (i.e., downscaled) satellite soil moisture. We assess the impact of terrain parameters on the prediction accuracy by cross-validating downscaled soil moisture with and without the support of bioclimatic and soil type information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated prediction variances for 28 years (1991–2018) across 15 km grids. We use independent in situ records from the International Soil Moisture Network (ISMN, 987 stations) and in situ precipitation records (171 additional stations) only for evaluating the new dataset. Cross-validated correlation between observed and predicted soil moisture values varies from r= 0.69 to r= 0.87 with root mean squared errors (RMSEs, m3 m−3) around 0.03 and 0.04. Our soil moisture predictions improve (a) the correlation with the ISMN (when compared with the original ESA-CCI dataset) from r= 0.30 (RMSE = 0.09, unbiased RMSE (ubRMSE) = 0.37) to r= 0.66 (RMSE = 0.05, ubRMSE = 0.18) and (b) the correlation with local precipitation records across boreal (from r= < 0.3 up to r= 0.49) or tropical areas (from r= < 0.3 to r= 0.46) which are currently poorly represented in the ISMN. Temporal trends show a decline of global annual soil moisture using (a) data from the ISMN (-1.5[-1.8,-1.24] %), (b) associated locations from the original ESA-CCI dataset (-0.87[-1.54,-0.17] %), (c) associated locations from predictions based on terrain parameters (-0.85[-1.01,-0.49] %), and (d) associated locations from predictions including bioclimatic and soil type information (-0.68[-0.91,-0.45] %). We provide a new soil moisture dataset that has no gaps and higher granularity together with validation methods and a modeling approach that can be applied worldwide (Guevara et al., 2020, https://doi.org/10.4211/hs.9f981ae4e68b4f529cdd7a5c9013e27e).
ISSN:1866-3516
1866-3508
1866-3516
DOI:10.5194/essd-13-1711-2021