Loading…

Chitosan-Coated SLN: A Potential System for Ocular Delivery of Metronidazole

Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular del...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutics 2023-06, Vol.15 (7), p.1855
Main Authors: Sikhondze, Simise S, Makoni, Pedzisai A, Walker, Roderick B, Khamanga, Sandile M M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular delivery was undertaken. Melt emulsification and ultrasonication were used to manufacture MTZ-loaded SLN, which were subsequently coated with chitosan (CS) by mechanical stirring using a 0.1% / solution. Gelucire 48/16 and Transcutol HP were used as the solid lipid and synthetic solvent, respectively, with Tween 20 included as a stabilizing agent. The critical quality attributes (CQA) of the optimized CS-coated SLN that was monitored included particle size, polydispersity index, Zeta potential, % entrapment efficiency, % MTZ loading, pH, and osmolarity. The optimized coated nanocarriers were evaluated using laser Doppler anemometry (LDA) and were determined to be stable, with particle sizes in the nanometre range. In vitro mucoadhesion, MTZ release and short-term stability, in addition to the determination of the shape of the optimized CS-coated SLN, were undertaken. The mucoadhesive properties of the optimized CS-coated MTZ-loaded SLN demonstrated increased ocular availability, which may allow dose reduction or longer intervals between doses by improving precorneal retention and ocular availability. Overall, our findings suggest that CS-coated MTZ-loaded SLNs have the potential for clinical application, to enhance ocular delivery through the release of MTZ.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics15071855