Loading…

Minimum Risk Facility Location-Allocation Problem with Type-2 Fuzzy Variables

Facility location decision is basically viewed as a long-term strategy, so the inherited uncertainty of main parameters ought to be taken into account in order to make models applicable. In this paper, we examine the impact of uncertain transportation costs and customers’ demands on the choice of op...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-9
Main Authors: Bai, Xuejie, Liu, Ying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Facility location decision is basically viewed as a long-term strategy, so the inherited uncertainty of main parameters ought to be taken into account in order to make models applicable. In this paper, we examine the impact of uncertain transportation costs and customers’ demands on the choice of optimal location decisions and allocation plans. This leads to the formulation of the facility location-allocation (FLA) problem as a fuzzy minimum risk programming, in which the uncertain parameters are assumed to be characterized by type-2 fuzzy variables with known type-2 possibility distributions. Since the inherent complexity of type-2 fuzzy FLA may be troublesome, existing methods are no longer effective in handling the proposed problems directly. We first derive the critical value formula for possibility value-at-risk reduced fuzzy variable of type-2 triangular fuzzy variable. On the basis of formula obtained, we can convert original fuzzy FLA model into its equivalent parametric mixed integer programming form, which can be solved by conventional numerical algorithms or general-purpose software. Taking use of structural characteristics of the equivalent optimization, we design a parameter decomposition method. Finally, a numerical example is presented to highlight the significance of the fuzzy FLA model. The computational results show the credibility and superiority of the proposed parametric optimization method.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2014/472623