Loading…

The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems

This paper presents a new heuristic method for maximum power point tracking (MPPT) in PV systems under normal and shadowing situations. The proposed method is a modification of the original queen honey bee migration (QHBM) to shorten the computation time for the maximum power point (MPP) in PV syste...

Full description

Saved in:
Bibliographic Details
Published in:Applied computational intelligence and soft computing 2022-11, Vol.2022, p.1-13
Main Authors: Aripriharta, Aripriharta, Wibowo, Kusmayanto Hadi, Fadlika, Irham, Muladi, Muladi, Mufti, Nandang, Diantoro, Markus, Horng, Gwo-Jiun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new heuristic method for maximum power point tracking (MPPT) in PV systems under normal and shadowing situations. The proposed method is a modification of the original queen honey bee migration (QHBM) to shorten the computation time for the maximum power point (MPP) in PV systems. QHBM initially uses random target locations to search for targets, in this case, MPP. So, we adjusted it to be able to do MPP point quests quickly. We accelerated the mQHBM learning process from the original randomly. We had fairly compared the mQHBM with several heuristics. Simulations were carried out with 2 scenarios to test the mQHBM. Based on the simulation results, it was found that mQHBM was able to exceed the capabilities of other methods such as original QHBM, particle swarm optimization (PSO) and perturb and observe (P&O), ANN, gray wolf (GWO), and cuckoo search (CS) in terms of MPPT speed and overshoot. However, the accuracy of mQHBM cannot exceed QHBM, ANN, and GWO. But still, mQHBM is better than PSO and P&O by about 15% and 18%, respectively. This experiment resulted in a gap of about 2% faster in speed, 0.34 seconds better in convergence time, and 0.2 fewer accuracies.
ISSN:1687-9724
1687-9732
DOI:10.1155/2022/1996410