Loading…

Timeline of SARS-CoV-2 Transmission in Sabah, Malaysia: Tracking the Molecular Evolution

Background: The COVID-19 pandemic poses an unprecedented public health challenge in Malaysia. The impact of COVID-19 varies between countries, including geographically divided states within a country. The deadly transmission of COVID-19 has taken a heavy toll in Sabah, Malaysia’s third most populous...

Full description

Saved in:
Bibliographic Details
Published in:Pathogens (Basel) 2023-08, Vol.12 (8), p.1047
Main Authors: Balakrishnan, Krishnan Nair, Yew, Chee Wei, Chong, Eric Tzyy Jiann, Daim, Sylvia, Mohamad, Nurul Elyani, Rodrigues, Kenneth, Lee, Ping-Chin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: The COVID-19 pandemic poses an unprecedented public health challenge in Malaysia. The impact of COVID-19 varies between countries, including geographically divided states within a country. The deadly transmission of COVID-19 has taken a heavy toll in Sabah, Malaysia’s third most populous state, contributing nearly 10% to the recorded national death toll as of 31 December 2022. Although several SARS-CoV-2 genome sequences have been analysed in Malaysia, molecular epidemiology data from Sabah focusing on the diversity and evolution of SARS-CoV-2 variants are still lacking. This study examines the major SARS-CoV-2 variants and emerging mutations from Sabah, the Malaysian Borneo, which is geographically divided from West Malaysia by the South China Sea. Methods: A total of 583 COVID-19 samples were subjected to whole genome sequencing and analysed with an additional 1123 Sabah COVID-19 sequences retrieved from the GISAID EpiCoV consortium. Nextclade and Pangolin were used to classify these sequences according to the clades and lineages. To determine the molecular evolutionary characteristics, Bayesian time-scaled phylogenetic analysis employing the maximum likelihood algorithm was performed on selected SARS-CoV-2 genome sequences, using the Wuhan-Hu-1 sequence as a reference. Results: Sabah was affected starting from the second COVID-19 wave in Malaysia, and the early sequences were classified under the O clade. The clade was gradually replaced during subsequent waves by G, GH, GK and GRA, with the latter being dominant as of December 2022. Phylogenetically, the Delta isolates in this study belong to the three main subclades 21A, 21J and 21I, while Omicron isolates belong to 21M, 21L and 22B. The time-scaled phylogeny suggested that SARS-CoV-2 introduced into Sabah originated from Peninsular Malaysia in early March 2020, and phylodynamic analysis indicated that increased viral spread was observed in early March and declined in late April, followed by an evolutionary stationary phase in June 2020. Conclusion: Continuous molecular epidemiology of SARS-CoV-2 in Sabah will provide a deeper understanding of the emergence and dominance of each variant in the locality, thus facilitating public health intervention measures.
ISSN:2076-0817
2076-0817
DOI:10.3390/pathogens12081047