Loading…

Simultaneous immobilization of lead, cadmium and arsenic in soil by iron-manganese modified biochar

Cationic lead/cadmium and anionic arsenic exhibit opposite geochemical behaviors in soils, which makes the synchronous remediation of As, Cd, and Pb challenging. In this study, we developed an iron-manganese modified biochar (BC-Fe-Mn) that prepared from straw with iron (Fe) and manganese (Mn) loadi...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in environmental science 2023-10, Vol.11
Main Authors: Yang, Zhihui, Zeng, Gai, Liu, Lin, He, Fangshu, Arinzechi, Chukwuma, Liao, Qi, Yang, Weichun, Si, Mengying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cationic lead/cadmium and anionic arsenic exhibit opposite geochemical behaviors in soils, which makes the synchronous remediation of As, Cd, and Pb challenging. In this study, we developed an iron-manganese modified biochar (BC-Fe-Mn) that prepared from straw with iron (Fe) and manganese (Mn) loading at a pyrolysis temperature of 550 °C. After BC-Fe-Mn immobilization for 90 days, the simultaneous immobilization efficiency of Pb, Cd, and As reached 57%, 51%, and 35%, respectively. Speciation distributions shows that As transformed from specific bound state into weakly low crystallinity iron bound state. Cd transformed from carbonate fraction into Fe-Mn oxide bound fraction, and Pb transformed from carbonate fraction into residual state. During the procedure, simultaneous immobilization mechanisms might involve heavy metal morphological transformation, precipitation/co-precipitation, and surface complexation. Cd and Pb absorbed onto BC-Fe-Mn. Then the increased free iron oxides (Fe d ) reacted with the dissolved As to form iron-arsenic precipitation. The results show that BC-Fe-Mn is a promising material for the simultaneous immobilization of Pb, Cd, and As in multi-metal contaminated soil.
ISSN:2296-665X
2296-665X
DOI:10.3389/fenvs.2023.1281341