Loading…

Effects of root restriction on phytohormone levels in different growth stages and grapevine organs

Phytohormones play important roles in germination, blossom, senescence, abscission of plants by a series of signal transduction and molecular regulation. The purpose of this research was to investigate the influence of root restriction (RR) cultivation on plant endogenous hormone variation tendency...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-01, Vol.12 (1), p.1323-1323, Article 1323
Main Authors: Li, Jiajia, Li, Dongmei, Liu, Boyang, Wang, Ruiqi, Yan, Yixuan, Li, Guanhan, Wang, Lei, Ma, Chao, Xu, Wenping, Zhao, Liping, Li, Xiangyi, Wang, Shiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phytohormones play important roles in germination, blossom, senescence, abscission of plants by a series of signal transduction and molecular regulation. The purpose of this research was to investigate the influence of root restriction (RR) cultivation on plant endogenous hormone variation tendency at different growth stages in diverse organs or tissues. ‘Muscat Hamburg’ (Vitis ‘Muscat of Alexandria’ × Vitis ‘Trollinger’) grapevine was used as test material. High Performance Liquid Chromatography (HPLC) was used to quantify hormone levels, qRT-PCR was used to quantify the expression of genes related to hormone biosynthesis pathway, and determined parameters of growth and photosynthetic, aiming to investigate the influence of root restriction on the formation and metabolism of phytohormones, as well as the degree of correlation between phytohormones and plant growth and photosynthetic intensity under root restriction. By measuring the photosynthetic rate of leaves at the stages of core-hardening, veraison and maturity, it was found that root restriction could reduce most photosynthetic parameters. The results also revealed that RR treatment increased abscisic acid (ABA), salicylic acid (SA), zeatin riboside (ZR), N6-(delta 2-isopentenyl)-adenine nucleoside (iPR) concentrations, while reduced auxin (IAA), 3-indolepropionic acid (IPA), 3-indolebutyric acid (IBA), gibberellin A 3 (GA 3 ), zeatin (ZT), N6-(delta 2-Isopentenyl)-adenine (iP), kinetin (KT), jasmonic acid (JA) and methyl jasmonate (MeJA) concentrations in most organs and at most developmental stages. RT-qPCR was carried out to further explore the effect of root restriction on genes expression of ABA, SA and IAA biosynthesis pathways at molecular level. Meanwhile, through correlation analysis, we found that different phytohormones contributed differently to physiological indicators, there existed strong correlation of ABA, KT, MeJA, iPR, SA, JA with leaf photosynthesis, GA 3 , IBA, ZR, IAA, ZT with fruit quality. In addition, we also found that the shoot growth related parameters were closely correlated with JA, IPA and iP. To sum up, our results suggested that RR treatment could significantly increase soluble solid content, regulate the growth and photosynthesis of grapevine, by affecting the biosynthesis of phytohormones. It could further prove that root restriction was a feasible technique to ameliorate the phenomenon of low quality in grape berry in southern China.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-04617-6