Loading…
Operational aspects of asynchronous filtering for flood forecasting
This study investigates the suitability of the asynchronous ensemble Kalman filter (AEnKF) and a partitioned updating scheme for hydrological forecasting. The AEnKF requires forward integration of the model for the analysis and enables assimilation of current and past observations simultaneously at...
Saved in:
Published in: | Hydrology and earth system sciences 2015-06, Vol.19 (6), p.2911-2924 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the suitability of the asynchronous ensemble Kalman filter (AEnKF) and a partitioned updating scheme for hydrological forecasting. The AEnKF requires forward integration of the model for the analysis and enables assimilation of current and past observations simultaneously at a single analysis step. The results of discharge assimilation into a grid-based hydrological model (using a soil moisture error model) for the Upper Ourthe catchment in the Belgian Ardennes show that including past predictions and observations in the data assimilation method improves the model forecasts. Additionally, we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for improved operational forecasting, which is evaluated using several validation measures. |
---|---|
ISSN: | 1607-7938 1027-5606 1607-7938 |
DOI: | 10.5194/hess-19-2911-2015 |