Loading…
Numerical Study on Aerodynamic Noise Reduction of Pantograph
A hybrid method incorporating the simulations of noise sources with delayed detached eddy simulation (DDES) and calculations of far-field noise with the Ffowcs Williams–Hawkings (FW-H) equation is used to study the suppression technique for the aerodynamic noise of a Faiveley CX-PG pantograph. Consi...
Saved in:
Published in: | Applied sciences 2022-11, Vol.12 (21), p.10720 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A hybrid method incorporating the simulations of noise sources with delayed detached eddy simulation (DDES) and calculations of far-field noise with the Ffowcs Williams–Hawkings (FW-H) equation is used to study the suppression technique for the aerodynamic noise of a Faiveley CX-PG pantograph. Considering that China’s Fuxing bullet trains operate at 350 km/h, the inflow velocity of 350 km/h is applied in this paper. The noise radiated from the panhead area, middle area, and bottom area at an inflow velocity of 350 km/h is distinguished. The noise intensities at the standard observer show that the noise radiated from the panhead area is the strongest, and the sound pressure level spectrum value is larger than the other two in the range above 500 Hz. The influence of applying the wavy rods and modifying the contact strip shape on the aerodynamic noise is discussed in detail. By comparing the acoustic source distribution and the far-field noise intensity, it is found that applying the wavy rods can effectively reduce the panhead noise, especially around the peak frequency. Modifying the shape of the contact strip to a hexagon can suppress the vortex shedding, leading to a lower surface pressure level. Combining the strip modification and wavy rods, the total noise intensity can be diminished by about 3.0 dB. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app122110720 |