Loading…

Frequency Assignment Model of Zero Divisor Graph

Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics 2021, Vol.2021, p.1-8
Main Authors: Radha, R., Rilwan, N. Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3
cites cdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3
container_end_page 8
container_issue
container_start_page 1
container_title Journal of applied mathematics
container_volume 2021
creator Radha, R.
Rilwan, N. Mohamed
description Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d>0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.
doi_str_mv 10.1155/2021/6698815
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d0798de2bc814b56a1a70d771b7d5707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696997463</galeid><doaj_id>oai_doaj_org_article_d0798de2bc814b56a1a70d771b7d5707</doaj_id><sourcerecordid>A696997463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMo-HnzByx41K0z2c3HHosftaB4URAvIZtk25R2U5Oq-O9NXfEoc5hheOblHV5CThFGiIxdUqB4yXkjJbIdcoBcihKgprt5RoRSMPGyTw5TWgBQYA0eELiN7u3d9earGKfkZ_3K9ZviIVi3LEJXvLoYimv_4VOIxSTq9fyY7HV6mdzJbz8iz7c3T1d35f3jZHo1vi9NxQQrrbbMOoeuFtTyGm1nJDRG8pZK1BTqirVo6raF2lLBupZucaBCg-Ta2eqITAddG_RCraNf6filgvbqZxHiTOm48WbplAXRSOtoayTWLeMatQArBLbCMgEia50NWusY8rNpoxbhPfbZvqIMqopVjNNMjQZqprOo77uwidrksm7lTehd5_N-zBveNKLmVT64GA5MDClF1_3ZRFDbQNQ2EPUbSMbPB3zue6s__f_0N_CQh7Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503353562</pqid></control><display><type>article</type><title>Frequency Assignment Model of Zero Divisor Graph</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Radha, R. ; Rilwan, N. Mohamed</creator><contributor>Chowdhury, Md Sazzad Hossien ; Md Sazzad Hossien Chowdhury</contributor><creatorcontrib>Radha, R. ; Rilwan, N. Mohamed ; Chowdhury, Md Sazzad Hossien ; Md Sazzad Hossien Chowdhury</creatorcontrib><description>Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d&gt;0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2021/6698815</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Apexes ; Assignment problem ; Commutativity ; Frequencies ; Frequency assignment ; Labeling ; Optimization techniques ; Rings (mathematics) ; Terminology ; Wireless networks</subject><ispartof>Journal of applied mathematics, 2021, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 R. Radha and N. Mohamed Rilwan.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 R. Radha and N. Mohamed Rilwan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</citedby><cites>FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</cites><orcidid>0000-0002-4726-1094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2503353562/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2503353562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Chowdhury, Md Sazzad Hossien</contributor><contributor>Md Sazzad Hossien Chowdhury</contributor><creatorcontrib>Radha, R.</creatorcontrib><creatorcontrib>Rilwan, N. Mohamed</creatorcontrib><title>Frequency Assignment Model of Zero Divisor Graph</title><title>Journal of applied mathematics</title><description>Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d&gt;0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.</description><subject>Apexes</subject><subject>Assignment problem</subject><subject>Commutativity</subject><subject>Frequencies</subject><subject>Frequency assignment</subject><subject>Labeling</subject><subject>Optimization techniques</subject><subject>Rings (mathematics)</subject><subject>Terminology</subject><subject>Wireless networks</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEQhoMo-HnzByx41K0z2c3HHosftaB4URAvIZtk25R2U5Oq-O9NXfEoc5hheOblHV5CThFGiIxdUqB4yXkjJbIdcoBcihKgprt5RoRSMPGyTw5TWgBQYA0eELiN7u3d9earGKfkZ_3K9ZviIVi3LEJXvLoYimv_4VOIxSTq9fyY7HV6mdzJbz8iz7c3T1d35f3jZHo1vi9NxQQrrbbMOoeuFtTyGm1nJDRG8pZK1BTqirVo6raF2lLBupZucaBCg-Ta2eqITAddG_RCraNf6filgvbqZxHiTOm48WbplAXRSOtoayTWLeMatQArBLbCMgEia50NWusY8rNpoxbhPfbZvqIMqopVjNNMjQZqprOo77uwidrksm7lTehd5_N-zBveNKLmVT64GA5MDClF1_3ZRFDbQNQ2EPUbSMbPB3zue6s__f_0N_CQh7Y</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Radha, R.</creator><creator>Rilwan, N. Mohamed</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4726-1094</orcidid></search><sort><creationdate>2021</creationdate><title>Frequency Assignment Model of Zero Divisor Graph</title><author>Radha, R. ; Rilwan, N. Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Assignment problem</topic><topic>Commutativity</topic><topic>Frequencies</topic><topic>Frequency assignment</topic><topic>Labeling</topic><topic>Optimization techniques</topic><topic>Rings (mathematics)</topic><topic>Terminology</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radha, R.</creatorcontrib><creatorcontrib>Rilwan, N. Mohamed</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radha, R.</au><au>Rilwan, N. Mohamed</au><au>Chowdhury, Md Sazzad Hossien</au><au>Md Sazzad Hossien Chowdhury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Assignment Model of Zero Divisor Graph</atitle><jtitle>Journal of applied mathematics</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d&gt;0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6698815</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4726-1094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of applied mathematics, 2021, Vol.2021, p.1-8
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d0798de2bc814b56a1a70d771b7d5707
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Apexes
Assignment problem
Commutativity
Frequencies
Frequency assignment
Labeling
Optimization techniques
Rings (mathematics)
Terminology
Wireless networks
title Frequency Assignment Model of Zero Divisor Graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Assignment%20Model%20of%20Zero%20Divisor%20Graph&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Radha,%20R.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2021/6698815&rft_dat=%3Cgale_doaj_%3EA696997463%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503353562&rft_id=info:pmid/&rft_galeid=A696997463&rfr_iscdi=true