Loading…
Frequency Assignment Model of Zero Divisor Graph
Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is...
Saved in:
Published in: | Journal of applied mathematics 2021, Vol.2021, p.1-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | Journal of applied mathematics |
container_volume | 2021 |
creator | Radha, R. Rilwan, N. Mohamed |
description | Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d>0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer. |
doi_str_mv | 10.1155/2021/6698815 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d0798de2bc814b56a1a70d771b7d5707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696997463</galeid><doaj_id>oai_doaj_org_article_d0798de2bc814b56a1a70d771b7d5707</doaj_id><sourcerecordid>A696997463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMo-HnzByx41K0z2c3HHosftaB4URAvIZtk25R2U5Oq-O9NXfEoc5hheOblHV5CThFGiIxdUqB4yXkjJbIdcoBcihKgprt5RoRSMPGyTw5TWgBQYA0eELiN7u3d9earGKfkZ_3K9ZviIVi3LEJXvLoYimv_4VOIxSTq9fyY7HV6mdzJbz8iz7c3T1d35f3jZHo1vi9NxQQrrbbMOoeuFtTyGm1nJDRG8pZK1BTqirVo6raF2lLBupZucaBCg-Ta2eqITAddG_RCraNf6filgvbqZxHiTOm48WbplAXRSOtoayTWLeMatQArBLbCMgEia50NWusY8rNpoxbhPfbZvqIMqopVjNNMjQZqprOo77uwidrksm7lTehd5_N-zBveNKLmVT64GA5MDClF1_3ZRFDbQNQ2EPUbSMbPB3zue6s__f_0N_CQh7Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503353562</pqid></control><display><type>article</type><title>Frequency Assignment Model of Zero Divisor Graph</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Radha, R. ; Rilwan, N. Mohamed</creator><contributor>Chowdhury, Md Sazzad Hossien ; Md Sazzad Hossien Chowdhury</contributor><creatorcontrib>Radha, R. ; Rilwan, N. Mohamed ; Chowdhury, Md Sazzad Hossien ; Md Sazzad Hossien Chowdhury</creatorcontrib><description>Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d>0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2021/6698815</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Apexes ; Assignment problem ; Commutativity ; Frequencies ; Frequency assignment ; Labeling ; Optimization techniques ; Rings (mathematics) ; Terminology ; Wireless networks</subject><ispartof>Journal of applied mathematics, 2021, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 R. Radha and N. Mohamed Rilwan.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 R. Radha and N. Mohamed Rilwan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</citedby><cites>FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</cites><orcidid>0000-0002-4726-1094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2503353562/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2503353562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Chowdhury, Md Sazzad Hossien</contributor><contributor>Md Sazzad Hossien Chowdhury</contributor><creatorcontrib>Radha, R.</creatorcontrib><creatorcontrib>Rilwan, N. Mohamed</creatorcontrib><title>Frequency Assignment Model of Zero Divisor Graph</title><title>Journal of applied mathematics</title><description>Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d>0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.</description><subject>Apexes</subject><subject>Assignment problem</subject><subject>Commutativity</subject><subject>Frequencies</subject><subject>Frequency assignment</subject><subject>Labeling</subject><subject>Optimization techniques</subject><subject>Rings (mathematics)</subject><subject>Terminology</subject><subject>Wireless networks</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEQhoMo-HnzByx41K0z2c3HHosftaB4URAvIZtk25R2U5Oq-O9NXfEoc5hheOblHV5CThFGiIxdUqB4yXkjJbIdcoBcihKgprt5RoRSMPGyTw5TWgBQYA0eELiN7u3d9earGKfkZ_3K9ZviIVi3LEJXvLoYimv_4VOIxSTq9fyY7HV6mdzJbz8iz7c3T1d35f3jZHo1vi9NxQQrrbbMOoeuFtTyGm1nJDRG8pZK1BTqirVo6raF2lLBupZucaBCg-Ta2eqITAddG_RCraNf6filgvbqZxHiTOm48WbplAXRSOtoayTWLeMatQArBLbCMgEia50NWusY8rNpoxbhPfbZvqIMqopVjNNMjQZqprOo77uwidrksm7lTehd5_N-zBveNKLmVT64GA5MDClF1_3ZRFDbQNQ2EPUbSMbPB3zue6s__f_0N_CQh7Y</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Radha, R.</creator><creator>Rilwan, N. Mohamed</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4726-1094</orcidid></search><sort><creationdate>2021</creationdate><title>Frequency Assignment Model of Zero Divisor Graph</title><author>Radha, R. ; Rilwan, N. Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Assignment problem</topic><topic>Commutativity</topic><topic>Frequencies</topic><topic>Frequency assignment</topic><topic>Labeling</topic><topic>Optimization techniques</topic><topic>Rings (mathematics)</topic><topic>Terminology</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radha, R.</creatorcontrib><creatorcontrib>Rilwan, N. Mohamed</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radha, R.</au><au>Rilwan, N. Mohamed</au><au>Chowdhury, Md Sazzad Hossien</au><au>Md Sazzad Hossien Chowdhury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Assignment Model of Zero Divisor Graph</atitle><jtitle>Journal of applied mathematics</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>Given a frequency assignment network model is a zero divisor graph Γ=V,E of commutative ring Rη, in this model, each node is considered to be a channel and their labelings are said to be the frequencies, which are assigned by the L2,1 and L3,2,1 labeling constraints. For a graph Γ, L2,1 labeling is a nonnegative real valued function f:VG⟶0,∞ such that ∣fx−fy∣≥2d if d=1 and ∣fx−fy∣≥d if d=2 where x and y are any two vertices in V and d>0 is a distance between x and y. Similarly, one can extend this distance labeling terminology up to the diameter of a graph in order to enhance the channel clarity and to prevent the overlapping of signal produced with the minimum resource (frequency) provided. In general, this terminology is known as the Lh,k labeling where h is the difference of any two vertex frequencies connected by a two length path. In this paper, our aim is to find the minimum spanning sharp upper frequency bound λ2,1 and λ3,2,1, within Δ2, in terms of maximum and minimum degree of Γ by the distance labeling L2,1 and L3,2,1, respectively, for some order η=pnq,pqr,pn where p,q,r are distinct prime and n is any positive integer.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6698815</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4726-1094</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of applied mathematics, 2021, Vol.2021, p.1-8 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d0798de2bc814b56a1a70d771b7d5707 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access |
subjects | Apexes Assignment problem Commutativity Frequencies Frequency assignment Labeling Optimization techniques Rings (mathematics) Terminology Wireless networks |
title | Frequency Assignment Model of Zero Divisor Graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Assignment%20Model%20of%20Zero%20Divisor%20Graph&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Radha,%20R.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2021/6698815&rft_dat=%3Cgale_doaj_%3EA696997463%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3575-dad5dee1e472d641dfc809c86b281a20435b1c4bb04d275fb25dee027a086aed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503353562&rft_id=info:pmid/&rft_galeid=A696997463&rfr_iscdi=true |