Loading…
Atomic Data Assessment with PyNeb
PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in the parame...
Saved in:
Published in: | Atoms 2020-12, Vol.8 (4), p.66 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3 |
container_end_page | |
container_issue | 4 |
container_start_page | 66 |
container_title | Atoms |
container_volume | 8 |
creator | Morisset, Christophe Luridiana, Valentina García-Rojas, Jorge Gómez-Llanos, Verónica Bautista, Manuel Mendoza, Claudio |
description | PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in the parameter space (line ratio diagnostics, electron density and temperature, and ionic abundances) arising from the underlying atomic data by critically selecting the PyNeb default datasets. We evaluate the questioned radiative-rate accuracy of the collisionally excited forbidden lines of the N- and P-like ions (O ii, Ne iv, S ii, Cl iii, and Ar iv), which are used as density diagnostics. With the aid of observed line ratios in the dense NGC 7027 planetary nebula and careful data analysis, we arrive at emissivity ratio uncertainties from the radiative rates within 10%, a considerable improvement over a previously predicted 50%. We also examine the accuracy of an extensive dataset of electron-impact effective collision strengths for the carbon isoelectronic sequence recently published. By estimating the impact of the new data on the pivotal [N ii] and [O iii] temperature diagnostics and by benchmarking the collision strength with a measured resonance position, we question their usefulness in nebular modeling. We confirm that the effective-collision-strength scatter of selected datasets for these two ions does not lead to uncertainties in the temperature diagnostics larger than 10%. |
doi_str_mv | 10.3390/atoms8040066 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d097e2b1a3ff443a88bfdeabf3240097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d097e2b1a3ff443a88bfdeabf3240097</doaj_id><sourcerecordid>2524459514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGpv_oAVr67mc5McS_0qFPWg5zDZJLqlbWqyRfrvja5I5zLD8Mw7My9C5wRfM6bxDfRxnRXmGDfNERpRSlRNMebHB_UpmuS8xCU0YYrQEbqYlrGurW6hh2qas8957Td99dX1H9XL_snbM3QSYJX95C-P0dv93evssV48P8xn00Xdskb2tVLOkpZoAqRtQtAUXJDCc6aEUxKIlgSwtQ4cl04JW2hKBQfwGDvJgY3RfNB1EZZmm7o1pL2J0JnfRkzvBlLftStvHNbSU0uAhcA5A6VscB5sYLS8r2XRuhy0til-7nzuzTLu0qacb6ignAstCC_U1UC1KeacfPjfSrD58dQcesq-AX6iaDU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524459514</pqid></control><display><type>article</type><title>Atomic Data Assessment with PyNeb</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Morisset, Christophe ; Luridiana, Valentina ; García-Rojas, Jorge ; Gómez-Llanos, Verónica ; Bautista, Manuel ; Mendoza, Claudio</creator><creatorcontrib>Morisset, Christophe ; Luridiana, Valentina ; García-Rojas, Jorge ; Gómez-Llanos, Verónica ; Bautista, Manuel ; Mendoza, Claudio</creatorcontrib><description>PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in the parameter space (line ratio diagnostics, electron density and temperature, and ionic abundances) arising from the underlying atomic data by critically selecting the PyNeb default datasets. We evaluate the questioned radiative-rate accuracy of the collisionally excited forbidden lines of the N- and P-like ions (O ii, Ne iv, S ii, Cl iii, and Ar iv), which are used as density diagnostics. With the aid of observed line ratios in the dense NGC 7027 planetary nebula and careful data analysis, we arrive at emissivity ratio uncertainties from the radiative rates within 10%, a considerable improvement over a previously predicted 50%. We also examine the accuracy of an extensive dataset of electron-impact effective collision strengths for the carbon isoelectronic sequence recently published. By estimating the impact of the new data on the pivotal [N ii] and [O iii] temperature diagnostics and by benchmarking the collision strength with a measured resonance position, we question their usefulness in nebular modeling. We confirm that the effective-collision-strength scatter of selected datasets for these two ions does not lead to uncertainties in the temperature diagnostics larger than 10%.</description><identifier>ISSN: 2218-2004</identifier><identifier>EISSN: 2218-2004</identifier><identifier>DOI: 10.3390/atoms8040066</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>astrophysical software ; atomic data assessment ; atomic databases ; Atomic structure ; Data analysis ; Datasets ; Electron density ; Electron impact ; Energy ; Historical structures ; Isoelectronic sequence ; nebular modeling ; Planetary nebulae ; Plasma ; plasma diagnostics ; Position measurement ; Temperature ; Uncertainty</subject><ispartof>Atoms, 2020-12, Vol.8 (4), p.66</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3</citedby><cites>FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3</cites><orcidid>0000-0002-1825-8267 ; 0000-0001-6837-3055 ; 0000-0002-6138-1869 ; 0000-0001-5801-6724 ; 0000-0002-2854-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2524459514/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2524459514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Morisset, Christophe</creatorcontrib><creatorcontrib>Luridiana, Valentina</creatorcontrib><creatorcontrib>García-Rojas, Jorge</creatorcontrib><creatorcontrib>Gómez-Llanos, Verónica</creatorcontrib><creatorcontrib>Bautista, Manuel</creatorcontrib><creatorcontrib>Mendoza, Claudio</creatorcontrib><title>Atomic Data Assessment with PyNeb</title><title>Atoms</title><description>PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in the parameter space (line ratio diagnostics, electron density and temperature, and ionic abundances) arising from the underlying atomic data by critically selecting the PyNeb default datasets. We evaluate the questioned radiative-rate accuracy of the collisionally excited forbidden lines of the N- and P-like ions (O ii, Ne iv, S ii, Cl iii, and Ar iv), which are used as density diagnostics. With the aid of observed line ratios in the dense NGC 7027 planetary nebula and careful data analysis, we arrive at emissivity ratio uncertainties from the radiative rates within 10%, a considerable improvement over a previously predicted 50%. We also examine the accuracy of an extensive dataset of electron-impact effective collision strengths for the carbon isoelectronic sequence recently published. By estimating the impact of the new data on the pivotal [N ii] and [O iii] temperature diagnostics and by benchmarking the collision strength with a measured resonance position, we question their usefulness in nebular modeling. We confirm that the effective-collision-strength scatter of selected datasets for these two ions does not lead to uncertainties in the temperature diagnostics larger than 10%.</description><subject>astrophysical software</subject><subject>atomic data assessment</subject><subject>atomic databases</subject><subject>Atomic structure</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Electron density</subject><subject>Electron impact</subject><subject>Energy</subject><subject>Historical structures</subject><subject>Isoelectronic sequence</subject><subject>nebular modeling</subject><subject>Planetary nebulae</subject><subject>Plasma</subject><subject>plasma diagnostics</subject><subject>Position measurement</subject><subject>Temperature</subject><subject>Uncertainty</subject><issn>2218-2004</issn><issn>2218-2004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGpv_oAVr67mc5McS_0qFPWg5zDZJLqlbWqyRfrvja5I5zLD8Mw7My9C5wRfM6bxDfRxnRXmGDfNERpRSlRNMebHB_UpmuS8xCU0YYrQEbqYlrGurW6hh2qas8957Td99dX1H9XL_snbM3QSYJX95C-P0dv93evssV48P8xn00Xdskb2tVLOkpZoAqRtQtAUXJDCc6aEUxKIlgSwtQ4cl04JW2hKBQfwGDvJgY3RfNB1EZZmm7o1pL2J0JnfRkzvBlLftStvHNbSU0uAhcA5A6VscB5sYLS8r2XRuhy0til-7nzuzTLu0qacb6ignAstCC_U1UC1KeacfPjfSrD58dQcesq-AX6iaDU</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Morisset, Christophe</creator><creator>Luridiana, Valentina</creator><creator>García-Rojas, Jorge</creator><creator>Gómez-Llanos, Verónica</creator><creator>Bautista, Manuel</creator><creator>Mendoza, Claudio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1825-8267</orcidid><orcidid>https://orcid.org/0000-0001-6837-3055</orcidid><orcidid>https://orcid.org/0000-0002-6138-1869</orcidid><orcidid>https://orcid.org/0000-0001-5801-6724</orcidid><orcidid>https://orcid.org/0000-0002-2854-4806</orcidid></search><sort><creationdate>20201201</creationdate><title>Atomic Data Assessment with PyNeb</title><author>Morisset, Christophe ; Luridiana, Valentina ; García-Rojas, Jorge ; Gómez-Llanos, Verónica ; Bautista, Manuel ; Mendoza, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>astrophysical software</topic><topic>atomic data assessment</topic><topic>atomic databases</topic><topic>Atomic structure</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Electron density</topic><topic>Electron impact</topic><topic>Energy</topic><topic>Historical structures</topic><topic>Isoelectronic sequence</topic><topic>nebular modeling</topic><topic>Planetary nebulae</topic><topic>Plasma</topic><topic>plasma diagnostics</topic><topic>Position measurement</topic><topic>Temperature</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morisset, Christophe</creatorcontrib><creatorcontrib>Luridiana, Valentina</creatorcontrib><creatorcontrib>García-Rojas, Jorge</creatorcontrib><creatorcontrib>Gómez-Llanos, Verónica</creatorcontrib><creatorcontrib>Bautista, Manuel</creatorcontrib><creatorcontrib>Mendoza, Claudio</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atoms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morisset, Christophe</au><au>Luridiana, Valentina</au><au>García-Rojas, Jorge</au><au>Gómez-Llanos, Verónica</au><au>Bautista, Manuel</au><au>Mendoza, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Data Assessment with PyNeb</atitle><jtitle>Atoms</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>66</spage><pages>66-</pages><issn>2218-2004</issn><eissn>2218-2004</eissn><abstract>PyNeb is a Python package widely used to model emission lines in gaseous nebulae. We take advantage of its object-oriented architecture, class methods, and historical atomic database to structure a practical environment for atomic data assessment. Our aim is to reduce the uncertainties in the parameter space (line ratio diagnostics, electron density and temperature, and ionic abundances) arising from the underlying atomic data by critically selecting the PyNeb default datasets. We evaluate the questioned radiative-rate accuracy of the collisionally excited forbidden lines of the N- and P-like ions (O ii, Ne iv, S ii, Cl iii, and Ar iv), which are used as density diagnostics. With the aid of observed line ratios in the dense NGC 7027 planetary nebula and careful data analysis, we arrive at emissivity ratio uncertainties from the radiative rates within 10%, a considerable improvement over a previously predicted 50%. We also examine the accuracy of an extensive dataset of electron-impact effective collision strengths for the carbon isoelectronic sequence recently published. By estimating the impact of the new data on the pivotal [N ii] and [O iii] temperature diagnostics and by benchmarking the collision strength with a measured resonance position, we question their usefulness in nebular modeling. We confirm that the effective-collision-strength scatter of selected datasets for these two ions does not lead to uncertainties in the temperature diagnostics larger than 10%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atoms8040066</doi><orcidid>https://orcid.org/0000-0002-1825-8267</orcidid><orcidid>https://orcid.org/0000-0001-6837-3055</orcidid><orcidid>https://orcid.org/0000-0002-6138-1869</orcidid><orcidid>https://orcid.org/0000-0001-5801-6724</orcidid><orcidid>https://orcid.org/0000-0002-2854-4806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-2004 |
ispartof | Atoms, 2020-12, Vol.8 (4), p.66 |
issn | 2218-2004 2218-2004 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d097e2b1a3ff443a88bfdeabf3240097 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | astrophysical software atomic data assessment atomic databases Atomic structure Data analysis Datasets Electron density Electron impact Energy Historical structures Isoelectronic sequence nebular modeling Planetary nebulae Plasma plasma diagnostics Position measurement Temperature Uncertainty |
title | Atomic Data Assessment with PyNeb |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Data%20Assessment%20with%20PyNeb&rft.jtitle=Atoms&rft.au=Morisset,%20Christophe&rft.date=2020-12-01&rft.volume=8&rft.issue=4&rft.spage=66&rft.pages=66-&rft.issn=2218-2004&rft.eissn=2218-2004&rft_id=info:doi/10.3390/atoms8040066&rft_dat=%3Cproquest_doaj_%3E2524459514%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-88db1c191a1c6ff92adf75e4385d87a1971a0bbdad47d85bdb12254aae00d74a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524459514&rft_id=info:pmid/&rfr_iscdi=true |