Loading…

Height Measurement for Meter-Wave MIMO Radar Based on Sparse Array Under Multipath Interference

For meter-wave multiple-input multiple-output (MIMO) radar, the multipath of target echoes may cause severe errors in height measurement, especially in the case of complex terrain where terrain fluctuation, ground inclination, and multiple reflection points exist. Inspired by a sparse array with gre...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2024-11, Vol.16 (22), p.4331
Main Authors: Qin, Cong, Zhang, Qin, Zheng, Guimei, Zhang, Gangsheng, Wang, Shiqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For meter-wave multiple-input multiple-output (MIMO) radar, the multipath of target echoes may cause severe errors in height measurement, especially in the case of complex terrain where terrain fluctuation, ground inclination, and multiple reflection points exist. Inspired by a sparse array with greater degrees of freedom and low mutual coupling, a height measurement method based on a sparse array is proposed. First, a practical signal model of MIMO radar based on a sparse array is established. Then, the modified multiple signal classification (MUSIC) and maximum likelihood (ML) estimation algorithms based on two classical sparse arrays (coprime array and nested array) are proposed. To reduce the complexity of the algorithm, a real-valued processing algorithm for generalized MUSIC (GMUSIC) and maximum likelihood is proposed, and a reduced dimension matrix is introduced into the real-valued processing algorithm to further reduce computation complexity. Finally, sufficient simulation results are provided to illustrate the effectiveness and superiority of the proposed technique. The simulation results show that the height measurement accuracy can be efficiently improved by using our proposed technique for both simple and complex terrain.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16224331