Loading…

CT analysis of thoracolumbar body composition for estimating whole-body composition

Background To evaluate the correlation between single- and multi-slice cross-sectional thoracolumbar and whole-body compositions. Methods We retrospectively included patients who underwent whole-body PET–CT scans from January 2016 to December 2019 at multiple institutions. A priori-developed, deep l...

Full description

Saved in:
Bibliographic Details
Published in:Insights into imaging 2023-04, Vol.14 (1), p.69-69, Article 69
Main Authors: Hong, Jung Hee, Hong, Hyunsook, Choi, Ye Ra, Kim, Dong Hyun, Kim, Jin Young, Yoon, Jeong-Hwa, Yoon, Soon Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background To evaluate the correlation between single- and multi-slice cross-sectional thoracolumbar and whole-body compositions. Methods We retrospectively included patients who underwent whole-body PET–CT scans from January 2016 to December 2019 at multiple institutions. A priori-developed, deep learning-based commercially available 3D U-Net segmentation provided whole-body 3D reference volumes and 2D areas of muscle, visceral fat, and subcutaneous fat at the upper, middle, and lower endplate of the individual T1–L5 vertebrae. In the derivation set, we analyzed the Pearson correlation coefficients of single-slice and multi-slice averaged 2D areas (waist and T12–L1) with the reference values. We then built prediction models using the top three correlated levels and tested the models in the validation set. Results The derivation and validation datasets included 203 (mean age 58.2 years; 101 men) and 239 patients (mean age 57.8 years; 80 men). The coefficients were distributed bimodally, with the first peak at T4 (coefficient, 0.78) and the second peak at L2-3 (coefficient 0.90). The top three correlations in the abdominal scan range were found for multi-slice waist averaging (0.92) and single-slice L3 and L2 (0.90, each), while those in the chest scan range were multi-slice T12–L1 averaging (0.89), single-slice L1 (0.89), and T12 (0.86). The model performance at the top three levels for estimating whole-body composition was similar in the derivation and validation datasets. Conclusions Single-slice L2–3 (abdominal CT range) and L1 (chest CT range) analysis best correlated with whole-body composition around 0.90 (coefficient). Multi-slice waist averaging provided a slightly higher correlation of 0.92. Key points In single-slice analysis, the L2–3 and L1 levels had the closest correlations with whole-body composition. Multi-slice waist averaging (0.92; correlation) showed a better correlation than the L2–3 single-slice analysis (0.90) in the abdomen. Multi-slice T12–L1 averaging (0.89) provided a comparable correlation to the L1 level in the chest (0.89).
ISSN:1869-4101
1869-4101
DOI:10.1186/s13244-023-01402-z