Loading…
SURFACE MORPHOLOGY AND MICROHARDNESS BEHAVIOR OF 316L IN HAP-PMEDM
The development of biomaterials for implants nowadays requires materials with superior mechanical and physical properties for enhanced osseointegration and sustained longevity. This research work was conducted to investigate the influence of nano hydroxyapatite (HAp) powder mixed electrical discharg...
Saved in:
Published in: | Facta Universitatis. Series: Mechanical Engineering 2019-12, Vol.17 (3), p.445-454 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of biomaterials for implants nowadays requires materials with superior mechanical and physical properties for enhanced osseointegration and sustained longevity. This research work was conducted to investigate the influence of nano hydroxyapatite (HAp) powder mixed electrical discharge machining (PMEDM) on surface morphology and microhardness of modified 316L stainless steel surface. The chosen process parameters were discharge current, pulse on/off duration and gap voltage in order to analyze the selected output responses. HAp concentration (15 g/l) along with reverse polarity was kept constant for current experimentation. The experimental results testified that surface morphology of PMEDM surface was significantly improved along with augmentation of 79% in microhardness (HV) of HAp modified surface of medical grade stainless steel. Furthermore, XRD and SEM characterization confirmed the deposition of calcium, phosphorous and inter-metallic compounds on HA-PMEDMed surface. The surface thus produced is expected to facilitate better bone-implant adhesion and bioactivity. |
---|---|
ISSN: | 0354-2025 2335-0164 |
DOI: | 10.22190/FUME190510040S |