Loading…
Design and Synthesis of Various 5'-Deoxy-5'-(4-Substituted-1,2,3-Triazol-1-yl)-Uridine Analogues as Inhibitors of Mycobacterium tuberculosis Mur Ligases
The synthesis of hitherto unknown 5'-deoxy-5'-(4-substituted-1,2,3-triazol-1-yl)-uridine and its evaluation, through an one-pot screening assay, against MurA-F enzymes involved in (Mtb), are described. Starting from UDP- -acetylmuramic acid (UDP-MurNAc), the natural substrate involved in t...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2020-10, Vol.25 (21), p.4953 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis of hitherto unknown 5'-deoxy-5'-(4-substituted-1,2,3-triazol-1-yl)-uridine and its evaluation, through an one-pot screening assay, against MurA-F enzymes involved in
(Mtb), are described. Starting from UDP-
-acetylmuramic acid (UDP-MurNAc), the natural substrate involved in the peptidoglycan biosynthesis, our strategy was to substitute the diphosphate group of UDP-MurNAc by a 1,2,3-triazolo spacer under copper-catalyzed azide-alkyne cycloaddition conditions. The structure-activity relationship was discussed and among the 23 novel compounds developed,
-acetylglucosamine analogues
and
emerged as the best inhibitors against the Mtb MurA-F enzymes reconstruction pathway with an inhibitory effect of 56% and 50%, respectively, at 100 μM. Both compounds are selective inhibitors of Mtb MurE, the molecular docking and molecular dynamic simulation suggesting that
and
are occupying the active site of Mtb MurE ligase. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25214953 |