Loading…
Study on the Heat and Mass Transfer Characteristics of Humidifiers in Humidification–Dehumidification Desalination Systems
The humidifier plays a key role in a humidification–dehumidification (HDH) desalination system; it directly affects both the freshwater production efficiency and energy consumption ratio of the system. In this study, for a humidifier in an HDH system, a heat–mass coupled differential equation model...
Saved in:
Published in: | Energies (Basel) 2023-12, Vol.16 (24), p.8006 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The humidifier plays a key role in a humidification–dehumidification (HDH) desalination system; it directly affects both the freshwater production efficiency and energy consumption ratio of the system. In this study, for a humidifier in an HDH system, a heat–mass coupled differential equation model of spray water and air on the surface of the packing material was established, and the effects of parameters such as the spray water temperature (tw), mass flow rate of spray water (mw), air temperature (ta), and air mass flow rate (ma) on the humidification performance of humidifiers composed of eight different types of packing materials were investigated. The results show the following: (1) Under the same inlet spray water and air conditions, the humidification performance of different packing materials from good to bad is as follows: cellulose paper, polypropylene, hackettes, saddles, snowflakes, wooden slats, polyvinyl chloride, gunny bag cloth. (2) Increasing the tw can significantly improve the humidification performance. To achieve higher humidification energy efficiency, it is recommended to increase the tw to above 80 °C. (3) With the increase in the mw, although the humidification efficiency (εhum) decreases slightly, the humidification rate (mhum) increases, and the specific humidification energy ratio (ηhum) decreases accordingly. To maintain a high mhum and a low ηhum, it is advisable to control the mw at not less than 0.5 kg/s. (4) Increasing the humidifier inlet ta can improve the mhum, εhum, and ηhum, although not as effectively as increasing tw. (5) Increasing the ma can improve mhum and εhum. However, it simultaneously increases the ηhum. The results of this study can provide theoretical guidance for the selection of efficient packing materials and the optimization of humidifier operating conditions in HDH desalination systems. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16248006 |