Loading…
A Nonlinear Fatigue Damage Model Based on Equivalent Transformation of Stress
It is rather difficult for engineers to apply many of the fatigue damage models for requiring a knee point, material-dependent coefficient, or extensive testing, and some of them are only validated by a fatigue test of two-stage loading rather than higher-stage loading. In this paper, we propose a n...
Saved in:
Published in: | Journal of engineering (Cairo, Egypt) Egypt), 2021-11, Vol.2021, p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-9ecd9fe6bf4f3e357bba2dcaa8173c7b4083c1fd6b09147d1dae84ad2c7605473 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | Journal of engineering (Cairo, Egypt) |
container_volume | 2021 |
creator | Zhang, Lu Jin, Jie Zhou, Wei Li, Wen-Liang Qiao, Meng |
description | It is rather difficult for engineers to apply many of the fatigue damage models for requiring a knee point, material-dependent coefficient, or extensive testing, and some of them are only validated by a fatigue test of two-stage loading rather than higher-stage loading. In this paper, we propose a new model of fatigue cumulative damage in variable amplitude loading, which just requires the information of the S-N curve determined from the fatigue experiment. Specifically, the proposed model defines a stress equivalent transformation way to translate the damage of one stress to another stress through simple calculation. Experimental data of fatigue including two-, three-, and four-block loading verify the superiority of the proposed model by comparing it with the Miner model and Manson model. The results show that the proposed model can be generalized to any type of loading and presents a better prediction. Therefore, the advantage of the proposed model can be easily used by an engineer. |
doi_str_mv | 10.1155/2021/5581307 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d0cea4806e05445185e02601fd7f7007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d0cea4806e05445185e02601fd7f7007</doaj_id><sourcerecordid>2600068439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-9ecd9fe6bf4f3e357bba2dcaa8173c7b4083c1fd6b09147d1dae84ad2c7605473</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEhPsxg-IxBEGSZM07ZFvkBgcgHPkJs7I1DWQdCD-PRmbduRky3782n6L4ojRM8akPC9pyc6lrBmnaqcYlZyJiWhYubvNqdgvxin5lpaVbCrF1aiYXpCn0He-R4jkFgY_WyK5hgXMkEyDxY5cQkJLQk9uPpf-CzrsB_IaoU8uxEUeyJ3gyMsQMaXDYs9Bl3C8iQfF2-3N69X95PH57uHq4nFiRKmGSYPGNg6r1gnHkUvVtlBaA1AzxY1qBa25Yc5WLW2YUJZZwFqALY2qqBSKHxQPa10bYK4_ol9A_NEBvP4rhDjTEAdvOtSWGgRR0wrzpJCslpjfp1ldOUXpSut4rfURw-cS06DnYRn7fL7OHKVVLXiTqdM1ZWJIKaLbbmVUr_zXK__1xv-Mn6zxd99b-Pb_07_Jt4L-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600068439</pqid></control><display><type>article</type><title>A Nonlinear Fatigue Damage Model Based on Equivalent Transformation of Stress</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Zhang, Lu ; Jin, Jie ; Zhou, Wei ; Li, Wen-Liang ; Qiao, Meng</creator><contributor>Yang, Yaowen ; Yaowen Yang</contributor><creatorcontrib>Zhang, Lu ; Jin, Jie ; Zhou, Wei ; Li, Wen-Liang ; Qiao, Meng ; Yang, Yaowen ; Yaowen Yang</creatorcontrib><description>It is rather difficult for engineers to apply many of the fatigue damage models for requiring a knee point, material-dependent coefficient, or extensive testing, and some of them are only validated by a fatigue test of two-stage loading rather than higher-stage loading. In this paper, we propose a new model of fatigue cumulative damage in variable amplitude loading, which just requires the information of the S-N curve determined from the fatigue experiment. Specifically, the proposed model defines a stress equivalent transformation way to translate the damage of one stress to another stress through simple calculation. Experimental data of fatigue including two-, three-, and four-block loading verify the superiority of the proposed model by comparing it with the Miner model and Manson model. The results show that the proposed model can be generalized to any type of loading and presents a better prediction. Therefore, the advantage of the proposed model can be easily used by an engineer.</description><identifier>ISSN: 2314-4904</identifier><identifier>ISSN: 2314-4912</identifier><identifier>EISSN: 2314-4912</identifier><identifier>DOI: 10.1155/2021/5581307</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Block loading ; Crack propagation ; Cumulative damage ; Damage assessment ; Engineers ; Equivalence ; Fatigue failure ; Fatigue life ; Fatigue tests ; Mathematical analysis ; S N diagrams ; Variable amplitude loading</subject><ispartof>Journal of engineering (Cairo, Egypt), 2021-11, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 Lu Zhang et al.</rights><rights>Copyright © 2021 Lu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-9ecd9fe6bf4f3e357bba2dcaa8173c7b4083c1fd6b09147d1dae84ad2c7605473</cites><orcidid>0000-0002-4330-9134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2600068439/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2600068439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Yang, Yaowen</contributor><contributor>Yaowen Yang</contributor><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Jin, Jie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Li, Wen-Liang</creatorcontrib><creatorcontrib>Qiao, Meng</creatorcontrib><title>A Nonlinear Fatigue Damage Model Based on Equivalent Transformation of Stress</title><title>Journal of engineering (Cairo, Egypt)</title><description>It is rather difficult for engineers to apply many of the fatigue damage models for requiring a knee point, material-dependent coefficient, or extensive testing, and some of them are only validated by a fatigue test of two-stage loading rather than higher-stage loading. In this paper, we propose a new model of fatigue cumulative damage in variable amplitude loading, which just requires the information of the S-N curve determined from the fatigue experiment. Specifically, the proposed model defines a stress equivalent transformation way to translate the damage of one stress to another stress through simple calculation. Experimental data of fatigue including two-, three-, and four-block loading verify the superiority of the proposed model by comparing it with the Miner model and Manson model. The results show that the proposed model can be generalized to any type of loading and presents a better prediction. Therefore, the advantage of the proposed model can be easily used by an engineer.</description><subject>Block loading</subject><subject>Crack propagation</subject><subject>Cumulative damage</subject><subject>Damage assessment</subject><subject>Engineers</subject><subject>Equivalence</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Mathematical analysis</subject><subject>S N diagrams</subject><subject>Variable amplitude loading</subject><issn>2314-4904</issn><issn>2314-4912</issn><issn>2314-4912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1PwzAMhisEEhPsxg-IxBEGSZM07ZFvkBgcgHPkJs7I1DWQdCD-PRmbduRky3782n6L4ojRM8akPC9pyc6lrBmnaqcYlZyJiWhYubvNqdgvxin5lpaVbCrF1aiYXpCn0He-R4jkFgY_WyK5hgXMkEyDxY5cQkJLQk9uPpf-CzrsB_IaoU8uxEUeyJ3gyMsQMaXDYs9Bl3C8iQfF2-3N69X95PH57uHq4nFiRKmGSYPGNg6r1gnHkUvVtlBaA1AzxY1qBa25Yc5WLW2YUJZZwFqALY2qqBSKHxQPa10bYK4_ol9A_NEBvP4rhDjTEAdvOtSWGgRR0wrzpJCslpjfp1ldOUXpSut4rfURw-cS06DnYRn7fL7OHKVVLXiTqdM1ZWJIKaLbbmVUr_zXK__1xv-Mn6zxd99b-Pb_07_Jt4L-</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Zhang, Lu</creator><creator>Jin, Jie</creator><creator>Zhou, Wei</creator><creator>Li, Wen-Liang</creator><creator>Qiao, Meng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4330-9134</orcidid></search><sort><creationdate>20211109</creationdate><title>A Nonlinear Fatigue Damage Model Based on Equivalent Transformation of Stress</title><author>Zhang, Lu ; Jin, Jie ; Zhou, Wei ; Li, Wen-Liang ; Qiao, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-9ecd9fe6bf4f3e357bba2dcaa8173c7b4083c1fd6b09147d1dae84ad2c7605473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Block loading</topic><topic>Crack propagation</topic><topic>Cumulative damage</topic><topic>Damage assessment</topic><topic>Engineers</topic><topic>Equivalence</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Mathematical analysis</topic><topic>S N diagrams</topic><topic>Variable amplitude loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Jin, Jie</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Li, Wen-Liang</creatorcontrib><creatorcontrib>Qiao, Meng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Cairo, Egypt)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lu</au><au>Jin, Jie</au><au>Zhou, Wei</au><au>Li, Wen-Liang</au><au>Qiao, Meng</au><au>Yang, Yaowen</au><au>Yaowen Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonlinear Fatigue Damage Model Based on Equivalent Transformation of Stress</atitle><jtitle>Journal of engineering (Cairo, Egypt)</jtitle><date>2021-11-09</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-4904</issn><issn>2314-4912</issn><eissn>2314-4912</eissn><abstract>It is rather difficult for engineers to apply many of the fatigue damage models for requiring a knee point, material-dependent coefficient, or extensive testing, and some of them are only validated by a fatigue test of two-stage loading rather than higher-stage loading. In this paper, we propose a new model of fatigue cumulative damage in variable amplitude loading, which just requires the information of the S-N curve determined from the fatigue experiment. Specifically, the proposed model defines a stress equivalent transformation way to translate the damage of one stress to another stress through simple calculation. Experimental data of fatigue including two-, three-, and four-block loading verify the superiority of the proposed model by comparing it with the Miner model and Manson model. The results show that the proposed model can be generalized to any type of loading and presents a better prediction. Therefore, the advantage of the proposed model can be easily used by an engineer.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/5581307</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4330-9134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4904 |
ispartof | Journal of engineering (Cairo, Egypt), 2021-11, Vol.2021, p.1-8 |
issn | 2314-4904 2314-4912 2314-4912 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d0cea4806e05445185e02601fd7f7007 |
source | Open Access: Wiley-Blackwell Open Access Journals; ProQuest - Publicly Available Content Database |
subjects | Block loading Crack propagation Cumulative damage Damage assessment Engineers Equivalence Fatigue failure Fatigue life Fatigue tests Mathematical analysis S N diagrams Variable amplitude loading |
title | A Nonlinear Fatigue Damage Model Based on Equivalent Transformation of Stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonlinear%20Fatigue%20Damage%20Model%20Based%20on%20Equivalent%20Transformation%20of%20Stress&rft.jtitle=Journal%20of%20engineering%20(Cairo,%20Egypt)&rft.au=Zhang,%20Lu&rft.date=2021-11-09&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-4904&rft.eissn=2314-4912&rft_id=info:doi/10.1155/2021/5581307&rft_dat=%3Cproquest_doaj_%3E2600068439%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-9ecd9fe6bf4f3e357bba2dcaa8173c7b4083c1fd6b09147d1dae84ad2c7605473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2600068439&rft_id=info:pmid/&rfr_iscdi=true |