Loading…
Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement
A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a 2\times 2 terahertz (THz) antenna array realized in a 0.18- \mu \text{m} CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.7737-7746 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3 |
container_end_page | 7746 |
container_issue | |
container_start_page | 7737 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Chun-Hsing Chiu, Te-Yen |
description | A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a 2\times 2 terahertz (THz) antenna array realized in a 0.18- \mu \text{m} CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE _{3,\delta,9} , only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the 2\times 2 antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the 2\times 2 CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the 2\times 2 THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far. |
doi_str_mv | 10.1109/ACCESS.2018.2890678 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d0e8951b289445a38f78742f6d2eaf7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598872</ieee_id><doaj_id>oai_doaj_org_article_d0e8951b289445a38f78742f6d2eaf7d</doaj_id><sourcerecordid>2455605527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jZ1DLy0K9Chw9KdBdamEmWunMnuof31U-ciGC8kSL73CL6quhR8JQR3X9Ztu9luV5ILWElw3DbwrjqTwrpaGWXf_1d_rC6m6cBLQGmZ5qzab2PaDcSuhnis2308sh_Y_cYd9exrpIG6OceO_aRpTDiPma3TTCkhC6Vuv99t2T1l3FOeX06jdc74zK4xJrZJe0wdPVKaP1UfAg4TXbzl8-rX1ea-_Vbf3l3ftOvbutMc5tqA6CGQVGQDOEvCBrJCSS0s9NY5cqC1Vg6dVB0PwI2zATk-BGFkQ0GdVzcLbz_iwR9zfMT87EeM_l9jzDuPeY7dQL7nBM6Ih_I0rQ0qCA00WgbbS8LQ9IXr88J1zOOfJ5pmfxifcirne6mNsdwUzbKllq0uj9OUKZxUBfevDvnFIf_qkH9zqKAuF1QkohMCjANopPoLNaiLEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605527</pqid></control><display><type>article</type><title>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Chun-Hsing ; Chiu, Te-Yen</creator><creatorcontrib>Li, Chun-Hsing ; Chiu, Te-Yen</creatorcontrib><description><![CDATA[A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> terahertz (THz) antenna array realized in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE<inline-formula> <tex-math notation="LaTeX">_{3,\delta,9} </tex-math></inline-formula>, only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2890678</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna ; Antenna arrays ; Antenna gain ; Antennas ; Assembly ; CMOS ; CMOS technology ; dielectric resonator antenna ; Dielectric resonator antennas ; Dielectrics ; flip-chip packaging ; Gain ; higher-order mode ; Patch antennas ; power detector ; Radio antennas ; Resonators ; Silicon ; System-on-chip ; terahertz ; Terahertz frequencies ; terahertz imaging system</subject><ispartof>IEEE access, 2019, Vol.7, p.7737-7746</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</citedby><cites>FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</cites><orcidid>0000-0002-6807-5768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598872$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Chun-Hsing</creatorcontrib><creatorcontrib>Chiu, Te-Yen</creatorcontrib><title>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> terahertz (THz) antenna array realized in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE<inline-formula> <tex-math notation="LaTeX">_{3,\delta,9} </tex-math></inline-formula>, only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.]]></description><subject>Antenna</subject><subject>Antenna arrays</subject><subject>Antenna gain</subject><subject>Antennas</subject><subject>Assembly</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>dielectric resonator antenna</subject><subject>Dielectric resonator antennas</subject><subject>Dielectrics</subject><subject>flip-chip packaging</subject><subject>Gain</subject><subject>higher-order mode</subject><subject>Patch antennas</subject><subject>power detector</subject><subject>Radio antennas</subject><subject>Resonators</subject><subject>Silicon</subject><subject>System-on-chip</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><subject>terahertz imaging system</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jZ1DLy0K9Chw9KdBdamEmWunMnuof31U-ciGC8kSL73CL6quhR8JQR3X9Ztu9luV5ILWElw3DbwrjqTwrpaGWXf_1d_rC6m6cBLQGmZ5qzab2PaDcSuhnis2308sh_Y_cYd9exrpIG6OceO_aRpTDiPma3TTCkhC6Vuv99t2T1l3FOeX06jdc74zK4xJrZJe0wdPVKaP1UfAg4TXbzl8-rX1ea-_Vbf3l3ftOvbutMc5tqA6CGQVGQDOEvCBrJCSS0s9NY5cqC1Vg6dVB0PwI2zATk-BGFkQ0GdVzcLbz_iwR9zfMT87EeM_l9jzDuPeY7dQL7nBM6Ih_I0rQ0qCA00WgbbS8LQ9IXr88J1zOOfJ5pmfxifcirne6mNsdwUzbKllq0uj9OUKZxUBfevDvnFIf_qkH9zqKAuF1QkohMCjANopPoLNaiLEw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Chun-Hsing</creator><creator>Chiu, Te-Yen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6807-5768</orcidid></search><sort><creationdate>2019</creationdate><title>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</title><author>Li, Chun-Hsing ; Chiu, Te-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna</topic><topic>Antenna arrays</topic><topic>Antenna gain</topic><topic>Antennas</topic><topic>Assembly</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>dielectric resonator antenna</topic><topic>Dielectric resonator antennas</topic><topic>Dielectrics</topic><topic>flip-chip packaging</topic><topic>Gain</topic><topic>higher-order mode</topic><topic>Patch antennas</topic><topic>power detector</topic><topic>Radio antennas</topic><topic>Resonators</topic><topic>Silicon</topic><topic>System-on-chip</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><topic>terahertz imaging system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chun-Hsing</creatorcontrib><creatorcontrib>Chiu, Te-Yen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chun-Hsing</au><au>Chiu, Te-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>7737</spage><epage>7746</epage><pages>7737-7746</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> terahertz (THz) antenna array realized in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE<inline-formula> <tex-math notation="LaTeX">_{3,\delta,9} </tex-math></inline-formula>, only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2890678</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6807-5768</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.7737-7746 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d0e8951b289445a38f78742f6d2eaf7d |
source | IEEE Xplore Open Access Journals |
subjects | Antenna Antenna arrays Antenna gain Antennas Assembly CMOS CMOS technology dielectric resonator antenna Dielectric resonator antennas Dielectrics flip-chip packaging Gain higher-order mode Patch antennas power detector Radio antennas Resonators Silicon System-on-chip terahertz Terahertz frequencies terahertz imaging system |
title | Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Flip-Chip%20Packaged%20Dielectric%20Resonator%20Antenna%20for%20CMOS%20Terahertz%20Antenna%20Array%20Gain%20Enhancement&rft.jtitle=IEEE%20access&rft.au=Li,%20Chun-Hsing&rft.date=2019&rft.volume=7&rft.spage=7737&rft.epage=7746&rft.pages=7737-7746&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2890678&rft_dat=%3Cproquest_doaj_%3E2455605527%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455605527&rft_id=info:pmid/&rft_ieee_id=8598872&rfr_iscdi=true |