Loading…

Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement

A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a 2\times 2 terahertz (THz) antenna array realized in a 0.18- \mu \text{m} CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.7737-7746
Main Authors: Li, Chun-Hsing, Chiu, Te-Yen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3
cites cdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3
container_end_page 7746
container_issue
container_start_page 7737
container_title IEEE access
container_volume 7
creator Li, Chun-Hsing
Chiu, Te-Yen
description A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a 2\times 2 terahertz (THz) antenna array realized in a 0.18- \mu \text{m} CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE _{3,\delta,9} , only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the 2\times 2 antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the 2\times 2 CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the 2\times 2 THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.
doi_str_mv 10.1109/ACCESS.2018.2890678
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d0e8951b289445a38f78742f6d2eaf7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598872</ieee_id><doaj_id>oai_doaj_org_article_d0e8951b289445a38f78742f6d2eaf7d</doaj_id><sourcerecordid>2455605527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jZ1DLy0K9Chw9KdBdamEmWunMnuof31U-ciGC8kSL73CL6quhR8JQR3X9Ztu9luV5ILWElw3DbwrjqTwrpaGWXf_1d_rC6m6cBLQGmZ5qzab2PaDcSuhnis2308sh_Y_cYd9exrpIG6OceO_aRpTDiPma3TTCkhC6Vuv99t2T1l3FOeX06jdc74zK4xJrZJe0wdPVKaP1UfAg4TXbzl8-rX1ea-_Vbf3l3ftOvbutMc5tqA6CGQVGQDOEvCBrJCSS0s9NY5cqC1Vg6dVB0PwI2zATk-BGFkQ0GdVzcLbz_iwR9zfMT87EeM_l9jzDuPeY7dQL7nBM6Ih_I0rQ0qCA00WgbbS8LQ9IXr88J1zOOfJ5pmfxifcirne6mNsdwUzbKllq0uj9OUKZxUBfevDvnFIf_qkH9zqKAuF1QkohMCjANopPoLNaiLEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605527</pqid></control><display><type>article</type><title>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Chun-Hsing ; Chiu, Te-Yen</creator><creatorcontrib>Li, Chun-Hsing ; Chiu, Te-Yen</creatorcontrib><description><![CDATA[A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> terahertz (THz) antenna array realized in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE<inline-formula> <tex-math notation="LaTeX">_{3,\delta,9} </tex-math></inline-formula>, only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2890678</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna ; Antenna arrays ; Antenna gain ; Antennas ; Assembly ; CMOS ; CMOS technology ; dielectric resonator antenna ; Dielectric resonator antennas ; Dielectrics ; flip-chip packaging ; Gain ; higher-order mode ; Patch antennas ; power detector ; Radio antennas ; Resonators ; Silicon ; System-on-chip ; terahertz ; Terahertz frequencies ; terahertz imaging system</subject><ispartof>IEEE access, 2019, Vol.7, p.7737-7746</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</citedby><cites>FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</cites><orcidid>0000-0002-6807-5768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598872$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Chun-Hsing</creatorcontrib><creatorcontrib>Chiu, Te-Yen</creatorcontrib><title>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> terahertz (THz) antenna array realized in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE<inline-formula> <tex-math notation="LaTeX">_{3,\delta,9} </tex-math></inline-formula>, only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.]]></description><subject>Antenna</subject><subject>Antenna arrays</subject><subject>Antenna gain</subject><subject>Antennas</subject><subject>Assembly</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>dielectric resonator antenna</subject><subject>Dielectric resonator antennas</subject><subject>Dielectrics</subject><subject>flip-chip packaging</subject><subject>Gain</subject><subject>higher-order mode</subject><subject>Patch antennas</subject><subject>power detector</subject><subject>Radio antennas</subject><subject>Resonators</subject><subject>Silicon</subject><subject>System-on-chip</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><subject>terahertz imaging system</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYYNWNH1F_QiYGdn-jZ1DLy0K9Chw9KdBdamEmWunMnuof31U-ciGC8kSL73CL6quhR8JQR3X9Ztu9luV5ILWElw3DbwrjqTwrpaGWXf_1d_rC6m6cBLQGmZ5qzab2PaDcSuhnis2308sh_Y_cYd9exrpIG6OceO_aRpTDiPma3TTCkhC6Vuv99t2T1l3FOeX06jdc74zK4xJrZJe0wdPVKaP1UfAg4TXbzl8-rX1ea-_Vbf3l3ftOvbutMc5tqA6CGQVGQDOEvCBrJCSS0s9NY5cqC1Vg6dVB0PwI2zATk-BGFkQ0GdVzcLbz_iwR9zfMT87EeM_l9jzDuPeY7dQL7nBM6Ih_I0rQ0qCA00WgbbS8LQ9IXr88J1zOOfJ5pmfxifcirne6mNsdwUzbKllq0uj9OUKZxUBfevDvnFIf_qkH9zqKAuF1QkohMCjANopPoLNaiLEw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Chun-Hsing</creator><creator>Chiu, Te-Yen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6807-5768</orcidid></search><sort><creationdate>2019</creationdate><title>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</title><author>Li, Chun-Hsing ; Chiu, Te-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna</topic><topic>Antenna arrays</topic><topic>Antenna gain</topic><topic>Antennas</topic><topic>Assembly</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>dielectric resonator antenna</topic><topic>Dielectric resonator antennas</topic><topic>Dielectrics</topic><topic>flip-chip packaging</topic><topic>Gain</topic><topic>higher-order mode</topic><topic>Patch antennas</topic><topic>power detector</topic><topic>Radio antennas</topic><topic>Resonators</topic><topic>Silicon</topic><topic>System-on-chip</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><topic>terahertz imaging system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chun-Hsing</creatorcontrib><creatorcontrib>Chiu, Te-Yen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chun-Hsing</au><au>Chiu, Te-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>7737</spage><epage>7746</epage><pages>7737-7746</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[A single dielectric resonator antenna (DRA) capable of enhancing the antenna gain of each element of a <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> terahertz (THz) antenna array realized in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology is proposed in this paper. The DRA implemented in a low-cost integrated-passive-device technology is flip-chip packaged onto the CMOS antenna array chip through low-loss gold bumps. By designing the DRA to work at the higher order mode of TE<inline-formula> <tex-math notation="LaTeX">_{3,\delta,9} </tex-math></inline-formula>, only a single DRA, instead of conventionally needing four DRAs, is required to simultaneously improve the antenna gain of each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> antenna array. This not only simplifies the assembly process, but it can also reduce the assembly cost. Moreover, the DRA can provide great antenna gain enhancement because of being made of high-resistivity silicon material and higher order mode operation. The simulated antenna gain of each on-chip patch antenna of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> CMOS antenna array can be increased from 0.1 to 8.6 dBi at 339 GHz as the DRA is added. To characterize the proposed DRA, four identical power detectors (PDs) are designed and integrated with each element of the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> THz antenna array. By measuring the voltage responsivity of each PD output, the characteristics of each antenna of the antenna array with the proposed DRA, including the gain enhancement level and radiation pattern, can be acquired. The measurement results match well with the simulated ones, verifying the proposed DRA operation principle. The four PDs with the proposed DRA are also successfully employed to demonstrate a THz imaging system at 340 GHz. To the best of our knowledge, the proposed DRA is the one with the highest order operation mode at THz frequencies reported thus far.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2890678</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6807-5768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.7737-7746
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d0e8951b289445a38f78742f6d2eaf7d
source IEEE Xplore Open Access Journals
subjects Antenna
Antenna arrays
Antenna gain
Antennas
Assembly
CMOS
CMOS technology
dielectric resonator antenna
Dielectric resonator antennas
Dielectrics
flip-chip packaging
Gain
higher-order mode
Patch antennas
power detector
Radio antennas
Resonators
Silicon
System-on-chip
terahertz
Terahertz frequencies
terahertz imaging system
title Single Flip-Chip Packaged Dielectric Resonator Antenna for CMOS Terahertz Antenna Array Gain Enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Flip-Chip%20Packaged%20Dielectric%20Resonator%20Antenna%20for%20CMOS%20Terahertz%20Antenna%20Array%20Gain%20Enhancement&rft.jtitle=IEEE%20access&rft.au=Li,%20Chun-Hsing&rft.date=2019&rft.volume=7&rft.spage=7737&rft.epage=7746&rft.pages=7737-7746&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2890678&rft_dat=%3Cproquest_doaj_%3E2455605527%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-581d8fe23e6f896e16fe61324168d699e9844439a923c0f80596fa0abf1527ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455605527&rft_id=info:pmid/&rft_ieee_id=8598872&rfr_iscdi=true