Loading…

Quantifying combined effects of colistin and ciprofloxacin against Escherichia coli in an in silico pharmacokinetic-pharmacodynamic model

Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli , offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokineti...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-05, Vol.14 (1), p.11706-11706, Article 11706
Main Authors: Zhao, Chenyan, Kristoffersson, Anders N., Khan, David D., Lagerbäck, Pernilla, Lustig, Ulrika, Cao, Sha, Annerstedt, Charlotte, Cars, Otto, Andersson, Dan I., Hughes, Diarmaid, Nielsen, Elisabet I., Friberg, Lena E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli , offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokinetic-pharmacodynamic model from in vitro static time-kill experiments (using strains with minimum inhibitory concentrations, MIC CIP 0.023–1 mg/L and MIC CST 0.5–0.75 mg/L). It was also sought to demonstrate an approach of simulating concentrations at the site of infection with population pharmacokinetic and whole-body physiologically based pharmacokinetic models to explore the clinical value of the combination when facing more resistant strains (using extrapolated strains with lower susceptibility). The combined effect in the final model was described as the sum of individual drug effects with a change in drug potency: for ciprofloxacin, concentration at half maximum killing rate (EC 50 ) in combination was 160% of the EC 50 in monodrug experiments, while for colistin, the change in EC 50 was strain-dependent from 54.1% to 119%. The benefit of co-administrating a lower-than-commonly-administrated colistin dose with ciprofloxacin in terms of drug effect in comparison to either monotherapy was predicted in simulated bloodstream infections and pyelonephritis. The study illustrates the value of pharmacokinetic-pharmacodynamic modelling and simulation in streamlining rational development of antibiotic combinations.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-61518-0