Loading…
Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement
An automatic and intelligent method for crack detection is significantly important, considering the popularity of large constructions. How to identify the cracks intelligently from massive point cloud data has become increasingly crucial. Terrestrial laser scanning is a measurement technique for thr...
Saved in:
Published in: | Advances in mechanical engineering 2019-09, Vol.11 (9) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Advances in mechanical engineering |
container_volume | 11 |
creator | Xu, Xiangyang Yang, Hao |
description | An automatic and intelligent method for crack detection is significantly important, considering the popularity of large constructions. How to identify the cracks intelligently from massive point cloud data has become increasingly crucial. Terrestrial laser scanning is a measurement technique for three-dimensional information acquisition which can obtain coordinates and intensity values of the laser reflectivity of a dense point cloud quickly and accurately. In this article, we focus on the optimal parameter of Gaussian filtering to balance the efficiency of crack identification and the accuracy of crack analysis. The innovation of this article is that we propose a novel view of the signal-to-noise ratio gradient for Gaussian filtering to identify and extract the cracks automatically from the point cloud data of the terrestrial laser scanning measurement. |
doi_str_mv | 10.1177/1687814019872650 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d0f33c234a1b4b80a5613268aafd31b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1687814019872650</sage_id><doaj_id>oai_doaj_org_article_d0f33c234a1b4b80a5613268aafd31b7</doaj_id><sourcerecordid>2314599309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhpfQQkyae4-CnDcdfaw-jsE0jcHQS3sWs1qto2StTSQtrf995bi4EChCzPDyzjPMTNN8pnBLqVJfqNRKUwHUaMVkBxfN6ii1R-3DOefssrnOOfTQgQSQxqya500sfprCzsdCXEL3TPzvUmMJcyQYh_pxOuSQyTgnUpYY_URySYsrS_KZ_ArlkRSfal5SwIlMmH0i2WGMIe7I3mOuxn3lf2o-jjhlf_03XjU_77_-WD-02-_fNuu7besEVaVlQtZnvDcIhmvhHVOgO8E084IODLuRDhw0B8nciGboeglMMsVdB0oaftVsTtxhxif7ksIe08HOGOybMKedxVSCm7wdYOTcMS6Q9qLXgJ2sa5IacRw47VVl3ZxYL2l-XeqM9mleUl1JtoxT0RnD4dgRTi6X5pyTH89dKdjjhez7C9WS9lSScef_Qf_r_wM2kpBG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314599309</pqid></control><display><type>article</type><title>Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement</title><source>Publicly Available Content Database</source><source>SAGE Journals Open Access</source><creator>Xu, Xiangyang ; Yang, Hao</creator><creatorcontrib>Xu, Xiangyang ; Yang, Hao</creatorcontrib><description>An automatic and intelligent method for crack detection is significantly important, considering the popularity of large constructions. How to identify the cracks intelligently from massive point cloud data has become increasingly crucial. Terrestrial laser scanning is a measurement technique for three-dimensional information acquisition which can obtain coordinates and intensity values of the laser reflectivity of a dense point cloud quickly and accurately. In this article, we focus on the optimal parameter of Gaussian filtering to balance the efficiency of crack identification and the accuracy of crack analysis. The innovation of this article is that we propose a novel view of the signal-to-noise ratio gradient for Gaussian filtering to identify and extract the cracks automatically from the point cloud data of the terrestrial laser scanning measurement.</description><identifier>ISSN: 1687-8132</identifier><identifier>EISSN: 1687-8140</identifier><identifier>DOI: 10.1177/1687814019872650</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cracks ; Data processing ; Filtration ; Lasers ; Measurement techniques ; Parameter identification ; Scanning ; Signal to noise ratio</subject><ispartof>Advances in mechanical engineering, 2019-09, Vol.11 (9)</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693</citedby><cites>FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693</cites><orcidid>0000-0002-9713-0535 ; 0000-0001-7883-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314599309/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314599309?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,25731,27830,27901,27902,36989,44566,44921,45309,75096</link.rule.ids></links><search><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><title>Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement</title><title>Advances in mechanical engineering</title><description>An automatic and intelligent method for crack detection is significantly important, considering the popularity of large constructions. How to identify the cracks intelligently from massive point cloud data has become increasingly crucial. Terrestrial laser scanning is a measurement technique for three-dimensional information acquisition which can obtain coordinates and intensity values of the laser reflectivity of a dense point cloud quickly and accurately. In this article, we focus on the optimal parameter of Gaussian filtering to balance the efficiency of crack identification and the accuracy of crack analysis. The innovation of this article is that we propose a novel view of the signal-to-noise ratio gradient for Gaussian filtering to identify and extract the cracks automatically from the point cloud data of the terrestrial laser scanning measurement.</description><subject>Cracks</subject><subject>Data processing</subject><subject>Filtration</subject><subject>Lasers</subject><subject>Measurement techniques</subject><subject>Parameter identification</subject><subject>Scanning</subject><subject>Signal to noise ratio</subject><issn>1687-8132</issn><issn>1687-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1rGzEQhpfQQkyae4-CnDcdfaw-jsE0jcHQS3sWs1qto2StTSQtrf995bi4EChCzPDyzjPMTNN8pnBLqVJfqNRKUwHUaMVkBxfN6ii1R-3DOefssrnOOfTQgQSQxqya500sfprCzsdCXEL3TPzvUmMJcyQYh_pxOuSQyTgnUpYY_URySYsrS_KZ_ArlkRSfal5SwIlMmH0i2WGMIe7I3mOuxn3lf2o-jjhlf_03XjU_77_-WD-02-_fNuu7besEVaVlQtZnvDcIhmvhHVOgO8E084IODLuRDhw0B8nciGboeglMMsVdB0oaftVsTtxhxif7ksIe08HOGOybMKedxVSCm7wdYOTcMS6Q9qLXgJ2sa5IacRw47VVl3ZxYL2l-XeqM9mleUl1JtoxT0RnD4dgRTi6X5pyTH89dKdjjhez7C9WS9lSScef_Qf_r_wM2kpBG</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Xu, Xiangyang</creator><creator>Yang, Hao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9713-0535</orcidid><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid></search><sort><creationdate>201909</creationdate><title>Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement</title><author>Xu, Xiangyang ; Yang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cracks</topic><topic>Data processing</topic><topic>Filtration</topic><topic>Lasers</topic><topic>Measurement techniques</topic><topic>Parameter identification</topic><topic>Scanning</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><collection>SAGE Journals Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiangyang</au><au>Yang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement</atitle><jtitle>Advances in mechanical engineering</jtitle><date>2019-09</date><risdate>2019</risdate><volume>11</volume><issue>9</issue><issn>1687-8132</issn><eissn>1687-8140</eissn><abstract>An automatic and intelligent method for crack detection is significantly important, considering the popularity of large constructions. How to identify the cracks intelligently from massive point cloud data has become increasingly crucial. Terrestrial laser scanning is a measurement technique for three-dimensional information acquisition which can obtain coordinates and intensity values of the laser reflectivity of a dense point cloud quickly and accurately. In this article, we focus on the optimal parameter of Gaussian filtering to balance the efficiency of crack identification and the accuracy of crack analysis. The innovation of this article is that we propose a novel view of the signal-to-noise ratio gradient for Gaussian filtering to identify and extract the cracks automatically from the point cloud data of the terrestrial laser scanning measurement.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1687814019872650</doi><orcidid>https://orcid.org/0000-0002-9713-0535</orcidid><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8132 |
ispartof | Advances in mechanical engineering, 2019-09, Vol.11 (9) |
issn | 1687-8132 1687-8140 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d0f33c234a1b4b80a5613268aafd31b7 |
source | Publicly Available Content Database; SAGE Journals Open Access |
subjects | Cracks Data processing Filtration Lasers Measurement techniques Parameter identification Scanning Signal to noise ratio |
title | Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T11%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20crack%20extraction%20and%20analysis%20for%20tunnel%20structures%20with%20terrestrial%20laser%20scanning%20measurement&rft.jtitle=Advances%20in%20mechanical%20engineering&rft.au=Xu,%20Xiangyang&rft.date=2019-09&rft.volume=11&rft.issue=9&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1177/1687814019872650&rft_dat=%3Cproquest_doaj_%3E2314599309%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-2464649ee9a09384ec270854282e41d2a5f1d3083062cfa9d5b6026273c507693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314599309&rft_id=info:pmid/&rft_sage_id=10.1177_1687814019872650&rfr_iscdi=true |