Loading…
A Chaotic-Based Interactive Autodidactic School Algorithm for Data Clustering Problems and Its Application on COVID-19 Disease Detection
In many disciplines, including pattern recognition, data mining, machine learning, image analysis, and bioinformatics, data clustering is a common analytical tool for data statistics. The majority of conventional clustering techniques are slow to converge and frequently get stuck in local optima. In...
Saved in:
Published in: | Symmetry (Basel) 2023-04, Vol.15 (4), p.894 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In many disciplines, including pattern recognition, data mining, machine learning, image analysis, and bioinformatics, data clustering is a common analytical tool for data statistics. The majority of conventional clustering techniques are slow to converge and frequently get stuck in local optima. In this regard, population-based meta-heuristic algorithms are used to overcome the problem of getting trapped in local optima and increase the convergence speed. An asymmetric approach to clustering the asymmetric self-organizing map is proposed in this paper. The Interactive Autodidactic School (IAS) is one of these population-based metaheuristic and asymmetry algorithms used to solve the clustering problem. The chaotic IAS algorithm also increases exploitation and generates a better population. In the proposed model, ten different chaotic maps and the intra-cluster summation fitness function have been used to improve the results of the IAS. According to the simulation findings, the IAS based on the Chebyshev chaotic function outperformed other chaotic IAS iterations and other metaheuristic algorithms. The efficacy of the proposed model is finally highlighted by comparing its performance with optimization algorithms in terms of fitness function and convergence rate. This algorithm can be used in different engineering problems as well. Moreover, the Binary IAS (BIAS) detects coronavirus disease 2019 (COVID-19). The results demonstrate that the accuracy of BIAS for the COVID-19 dataset is 96.25%. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym15040894 |