Loading…

Persistent Cardiometabolic Health Gaps: Can Therapeutic Care Gaps Be Precisely Identified from Electronic Health Records

The objective of this study was to determine the strengths and limitations of using structured electronic health records (EHR) to identify and manage cardiometabolic (CM) health gaps. We used medication adherence measures derived from dispense data to attribute related therapeutic care gaps (i.e., n...

Full description

Saved in:
Bibliographic Details
Published in:Healthcare (Basel) 2021-12, Vol.10 (1), p.70
Main Authors: Yan, Xiaowei, Stewart, Walter F, Husby, Hannah, Delatorre-Reimer, Jake, Mudiganti, Satish, Refai, Farah, Hudnut, Andrew, Knobel, Kevin, MacDonald, Karen, Sifakis, Frangiscos, Jones, James B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3
cites cdi_FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3
container_end_page
container_issue 1
container_start_page 70
container_title Healthcare (Basel)
container_volume 10
creator Yan, Xiaowei
Stewart, Walter F
Husby, Hannah
Delatorre-Reimer, Jake
Mudiganti, Satish
Refai, Farah
Hudnut, Andrew
Knobel, Kevin
MacDonald, Karen
Sifakis, Frangiscos
Jones, James B
description The objective of this study was to determine the strengths and limitations of using structured electronic health records (EHR) to identify and manage cardiometabolic (CM) health gaps. We used medication adherence measures derived from dispense data to attribute related therapeutic care gaps (i.e., no action to close health gaps) to patient- (i.e., failure to retrieve medication or low adherence) or clinician-related (i.e., failure to initiate/titrate medication) behavior. We illustrated how such data can be used to manage health and care gaps for blood pressure (BP), low-density lipoprotein cholesterol (LDL-C), and HbA1c for 240,582 Sutter Health primary care patients. Prevalence of health gaps was 44% for patients with hypertension, 33% with hyperlipidemia, and 57% with diabetes. Failure to retrieve medication was common; this patient-related care gap was highly associated with health gaps (odds ratios (OR): 1.23-1.76). Clinician-related therapeutic care gaps were common (16% for hypertension, and 40% and 27% for hyperlipidemia and diabetes, respectively), and strongly related to health gaps for hyperlipidemia (OR = 5.8; 95% CI: 5.6-6.0) and diabetes (OR = 5.7; 95% CI: 5.4-6.0). Additionally, a substantial minority of care gaps (9% to 21%) were uncertain, meaning we lacked evidence to attribute the gap to either patients or clinicians, hindering efforts to close the gaps.
doi_str_mv 10.3390/healthcare10010070
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1038900b1424731b66cbf2ec2cb2348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1038900b1424731b66cbf2ec2cb2348</doaj_id><sourcerecordid>2622286409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3</originalsourceid><addsrcrecordid>eNplkl1rFDEUhoMottT-AS9kwBtvVvM1mcQLwS61XShYpF6HfJzpZslM1mRG7L83u1trqyGQkPc9z8lJDkKvCX7PmMIf1mDitHYmA8G4zg4_Q8eU0m6hMKPPH-2P0GkpG1yHIkyy9iU6Yi1uKWXsGP26hlxCmWCcmqXJPqQBJmNTDK653KdoLsy2fKzi2NysIZstzFMVqxn2UnMGzXUGFwrEu2blKyn0AXzT5zQ05xHclNP4F_cNXMq-vEIvehMLnN6vJ-j7l_Ob5eXi6uvFavn5auG4EtNCOFAtF5R3ghLOoe1a2_qeERBE9MRaDkR2nTGKGM97Ro1zRDCslMKeGctO0OrA9cls9DaHweQ7nUzQ-4OUb7XJtaAI2hPMpMLYEl7zMWKFcLan4KizlHFZWZ8OrO1sB_CulppNfAJ9qoxhrW_TT11v2ErZVcC7e0BOP2Yokx5CcRCjGSHNRVNRf00KjlW1vv3HuklzHutT7VyEKinJDkgPLpdTKRn6h8sQrHd9ov_vkxr05nEZDyF_uoL9BrPEuzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621298817</pqid></control><display><type>article</type><title>Persistent Cardiometabolic Health Gaps: Can Therapeutic Care Gaps Be Precisely Identified from Electronic Health Records</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yan, Xiaowei ; Stewart, Walter F ; Husby, Hannah ; Delatorre-Reimer, Jake ; Mudiganti, Satish ; Refai, Farah ; Hudnut, Andrew ; Knobel, Kevin ; MacDonald, Karen ; Sifakis, Frangiscos ; Jones, James B</creator><creatorcontrib>Yan, Xiaowei ; Stewart, Walter F ; Husby, Hannah ; Delatorre-Reimer, Jake ; Mudiganti, Satish ; Refai, Farah ; Hudnut, Andrew ; Knobel, Kevin ; MacDonald, Karen ; Sifakis, Frangiscos ; Jones, James B</creatorcontrib><description>The objective of this study was to determine the strengths and limitations of using structured electronic health records (EHR) to identify and manage cardiometabolic (CM) health gaps. We used medication adherence measures derived from dispense data to attribute related therapeutic care gaps (i.e., no action to close health gaps) to patient- (i.e., failure to retrieve medication or low adherence) or clinician-related (i.e., failure to initiate/titrate medication) behavior. We illustrated how such data can be used to manage health and care gaps for blood pressure (BP), low-density lipoprotein cholesterol (LDL-C), and HbA1c for 240,582 Sutter Health primary care patients. Prevalence of health gaps was 44% for patients with hypertension, 33% with hyperlipidemia, and 57% with diabetes. Failure to retrieve medication was common; this patient-related care gap was highly associated with health gaps (odds ratios (OR): 1.23-1.76). Clinician-related therapeutic care gaps were common (16% for hypertension, and 40% and 27% for hyperlipidemia and diabetes, respectively), and strongly related to health gaps for hyperlipidemia (OR = 5.8; 95% CI: 5.6-6.0) and diabetes (OR = 5.7; 95% CI: 5.4-6.0). Additionally, a substantial minority of care gaps (9% to 21%) were uncertain, meaning we lacked evidence to attribute the gap to either patients or clinicians, hindering efforts to close the gaps.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare10010070</identifier><identifier>PMID: 35052233</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Blood pressure ; cardiometabolic conditions ; Cardiovascular disease ; care gaps ; Clinical medicine ; Diabetes ; electronic health record (EHR) ; Electronic health records ; health gaps ; Hypertension ; Identification ; Laboratories ; medication adherence ; Patient compliance ; Pharmacy ; Primary care</subject><ispartof>Healthcare (Basel), 2021-12, Vol.10 (1), p.70</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3</citedby><cites>FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3</cites><orcidid>0000-0001-8809-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621298817/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621298817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35052233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Xiaowei</creatorcontrib><creatorcontrib>Stewart, Walter F</creatorcontrib><creatorcontrib>Husby, Hannah</creatorcontrib><creatorcontrib>Delatorre-Reimer, Jake</creatorcontrib><creatorcontrib>Mudiganti, Satish</creatorcontrib><creatorcontrib>Refai, Farah</creatorcontrib><creatorcontrib>Hudnut, Andrew</creatorcontrib><creatorcontrib>Knobel, Kevin</creatorcontrib><creatorcontrib>MacDonald, Karen</creatorcontrib><creatorcontrib>Sifakis, Frangiscos</creatorcontrib><creatorcontrib>Jones, James B</creatorcontrib><title>Persistent Cardiometabolic Health Gaps: Can Therapeutic Care Gaps Be Precisely Identified from Electronic Health Records</title><title>Healthcare (Basel)</title><addtitle>Healthcare (Basel)</addtitle><description>The objective of this study was to determine the strengths and limitations of using structured electronic health records (EHR) to identify and manage cardiometabolic (CM) health gaps. We used medication adherence measures derived from dispense data to attribute related therapeutic care gaps (i.e., no action to close health gaps) to patient- (i.e., failure to retrieve medication or low adherence) or clinician-related (i.e., failure to initiate/titrate medication) behavior. We illustrated how such data can be used to manage health and care gaps for blood pressure (BP), low-density lipoprotein cholesterol (LDL-C), and HbA1c for 240,582 Sutter Health primary care patients. Prevalence of health gaps was 44% for patients with hypertension, 33% with hyperlipidemia, and 57% with diabetes. Failure to retrieve medication was common; this patient-related care gap was highly associated with health gaps (odds ratios (OR): 1.23-1.76). Clinician-related therapeutic care gaps were common (16% for hypertension, and 40% and 27% for hyperlipidemia and diabetes, respectively), and strongly related to health gaps for hyperlipidemia (OR = 5.8; 95% CI: 5.6-6.0) and diabetes (OR = 5.7; 95% CI: 5.4-6.0). Additionally, a substantial minority of care gaps (9% to 21%) were uncertain, meaning we lacked evidence to attribute the gap to either patients or clinicians, hindering efforts to close the gaps.</description><subject>Blood pressure</subject><subject>cardiometabolic conditions</subject><subject>Cardiovascular disease</subject><subject>care gaps</subject><subject>Clinical medicine</subject><subject>Diabetes</subject><subject>electronic health record (EHR)</subject><subject>Electronic health records</subject><subject>health gaps</subject><subject>Hypertension</subject><subject>Identification</subject><subject>Laboratories</subject><subject>medication adherence</subject><subject>Patient compliance</subject><subject>Pharmacy</subject><subject>Primary care</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkl1rFDEUhoMottT-AS9kwBtvVvM1mcQLwS61XShYpF6HfJzpZslM1mRG7L83u1trqyGQkPc9z8lJDkKvCX7PmMIf1mDitHYmA8G4zg4_Q8eU0m6hMKPPH-2P0GkpG1yHIkyy9iU6Yi1uKWXsGP26hlxCmWCcmqXJPqQBJmNTDK653KdoLsy2fKzi2NysIZstzFMVqxn2UnMGzXUGFwrEu2blKyn0AXzT5zQ05xHclNP4F_cNXMq-vEIvehMLnN6vJ-j7l_Ob5eXi6uvFavn5auG4EtNCOFAtF5R3ghLOoe1a2_qeERBE9MRaDkR2nTGKGM97Ro1zRDCslMKeGctO0OrA9cls9DaHweQ7nUzQ-4OUb7XJtaAI2hPMpMLYEl7zMWKFcLan4KizlHFZWZ8OrO1sB_CulppNfAJ9qoxhrW_TT11v2ErZVcC7e0BOP2Yokx5CcRCjGSHNRVNRf00KjlW1vv3HuklzHutT7VyEKinJDkgPLpdTKRn6h8sQrHd9ov_vkxr05nEZDyF_uoL9BrPEuzg</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>Yan, Xiaowei</creator><creator>Stewart, Walter F</creator><creator>Husby, Hannah</creator><creator>Delatorre-Reimer, Jake</creator><creator>Mudiganti, Satish</creator><creator>Refai, Farah</creator><creator>Hudnut, Andrew</creator><creator>Knobel, Kevin</creator><creator>MacDonald, Karen</creator><creator>Sifakis, Frangiscos</creator><creator>Jones, James B</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8809-5582</orcidid></search><sort><creationdate>20211231</creationdate><title>Persistent Cardiometabolic Health Gaps: Can Therapeutic Care Gaps Be Precisely Identified from Electronic Health Records</title><author>Yan, Xiaowei ; Stewart, Walter F ; Husby, Hannah ; Delatorre-Reimer, Jake ; Mudiganti, Satish ; Refai, Farah ; Hudnut, Andrew ; Knobel, Kevin ; MacDonald, Karen ; Sifakis, Frangiscos ; Jones, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood pressure</topic><topic>cardiometabolic conditions</topic><topic>Cardiovascular disease</topic><topic>care gaps</topic><topic>Clinical medicine</topic><topic>Diabetes</topic><topic>electronic health record (EHR)</topic><topic>Electronic health records</topic><topic>health gaps</topic><topic>Hypertension</topic><topic>Identification</topic><topic>Laboratories</topic><topic>medication adherence</topic><topic>Patient compliance</topic><topic>Pharmacy</topic><topic>Primary care</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaowei</creatorcontrib><creatorcontrib>Stewart, Walter F</creatorcontrib><creatorcontrib>Husby, Hannah</creatorcontrib><creatorcontrib>Delatorre-Reimer, Jake</creatorcontrib><creatorcontrib>Mudiganti, Satish</creatorcontrib><creatorcontrib>Refai, Farah</creatorcontrib><creatorcontrib>Hudnut, Andrew</creatorcontrib><creatorcontrib>Knobel, Kevin</creatorcontrib><creatorcontrib>MacDonald, Karen</creatorcontrib><creatorcontrib>Sifakis, Frangiscos</creatorcontrib><creatorcontrib>Jones, James B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaowei</au><au>Stewart, Walter F</au><au>Husby, Hannah</au><au>Delatorre-Reimer, Jake</au><au>Mudiganti, Satish</au><au>Refai, Farah</au><au>Hudnut, Andrew</au><au>Knobel, Kevin</au><au>MacDonald, Karen</au><au>Sifakis, Frangiscos</au><au>Jones, James B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent Cardiometabolic Health Gaps: Can Therapeutic Care Gaps Be Precisely Identified from Electronic Health Records</atitle><jtitle>Healthcare (Basel)</jtitle><addtitle>Healthcare (Basel)</addtitle><date>2021-12-31</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>70</spage><pages>70-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>The objective of this study was to determine the strengths and limitations of using structured electronic health records (EHR) to identify and manage cardiometabolic (CM) health gaps. We used medication adherence measures derived from dispense data to attribute related therapeutic care gaps (i.e., no action to close health gaps) to patient- (i.e., failure to retrieve medication or low adherence) or clinician-related (i.e., failure to initiate/titrate medication) behavior. We illustrated how such data can be used to manage health and care gaps for blood pressure (BP), low-density lipoprotein cholesterol (LDL-C), and HbA1c for 240,582 Sutter Health primary care patients. Prevalence of health gaps was 44% for patients with hypertension, 33% with hyperlipidemia, and 57% with diabetes. Failure to retrieve medication was common; this patient-related care gap was highly associated with health gaps (odds ratios (OR): 1.23-1.76). Clinician-related therapeutic care gaps were common (16% for hypertension, and 40% and 27% for hyperlipidemia and diabetes, respectively), and strongly related to health gaps for hyperlipidemia (OR = 5.8; 95% CI: 5.6-6.0) and diabetes (OR = 5.7; 95% CI: 5.4-6.0). Additionally, a substantial minority of care gaps (9% to 21%) were uncertain, meaning we lacked evidence to attribute the gap to either patients or clinicians, hindering efforts to close the gaps.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35052233</pmid><doi>10.3390/healthcare10010070</doi><orcidid>https://orcid.org/0000-0001-8809-5582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9032
ispartof Healthcare (Basel), 2021-12, Vol.10 (1), p.70
issn 2227-9032
2227-9032
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1038900b1424731b66cbf2ec2cb2348
source Publicly Available Content Database; PubMed Central
subjects Blood pressure
cardiometabolic conditions
Cardiovascular disease
care gaps
Clinical medicine
Diabetes
electronic health record (EHR)
Electronic health records
health gaps
Hypertension
Identification
Laboratories
medication adherence
Patient compliance
Pharmacy
Primary care
title Persistent Cardiometabolic Health Gaps: Can Therapeutic Care Gaps Be Precisely Identified from Electronic Health Records
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20Cardiometabolic%20Health%20Gaps:%20Can%20Therapeutic%20Care%20Gaps%20Be%20Precisely%20Identified%20from%20Electronic%20Health%20Records&rft.jtitle=Healthcare%20(Basel)&rft.au=Yan,%20Xiaowei&rft.date=2021-12-31&rft.volume=10&rft.issue=1&rft.spage=70&rft.pages=70-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare10010070&rft_dat=%3Cproquest_doaj_%3E2622286409%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-6ce954624762144e575b5df31e616f1bb4e1877aa91ad4f32acc16309990d3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621298817&rft_id=info:pmid/35052233&rfr_iscdi=true