Loading…

Dark Matter signals at the LHC from a 3HDM

A bstract We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2 . The other two doublets are inert and do not develop a VEV, leading to a dark scalar se...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2018-05, Vol.2018 (5), p.1-44, Article 30
Main Authors: Cordero, A., Hernandez-Sanchez, J., Keus, V., King, S. F., Moretti, S., Rojas, D., Sokolowska, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23
cites cdi_FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23
container_end_page 44
container_issue 5
container_start_page 1
container_title The journal of high energy physics
container_volume 2018
creator Cordero, A.
Hernandez-Sanchez, J.
Keus, V.
King, S. F.
Moretti, S.
Rojas, D.
Sokolowska, D.
description A bstract We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2 . The other two doublets are inert and do not develop a VEV, leading to a dark scalar sector controlled by Z 2 , with the lightest CP-even dark scalar H 1 being the DM candidate. This leads to the loop induced decay of the next-to-lightest scalar, H 2 → H 1 f f ¯ f = u , d , c , s , b , e , μ , τ , mediated by both dark CP-odd and charged scalars. This is a smoking-gun signal of the 3HDM since it is not allowed in the 2HDM with one inert doublet and is expected to be important when H 2 and H 1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, h → H 1 H 2 → H 1 H 1 f f ¯ into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel q q ¯ → H 1 H 1 Z ∗ → H 1 H 1 f f ¯ . We devise some benchmarks, compliant with collider, DM and cosmological data, for which the interplay between these modes is discussed. In particular, we show that the resulting detector signature, , with invariant mass of f f ¯ much smaller than m Z , can potentially be extracted already during Run 2 and 3. For example, the H 2 → H 1 γ * and γ * → e + e − case will give a spectacular QED mono-shower signal.
doi_str_mv 10.1007/JHEP05(2018)030
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d10413c85d084b1da3e982b7afdb92d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d10413c85d084b1da3e982b7afdb92d9</doaj_id><sourcerecordid>2037919633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws1piAaTQOztO7BG1hRS1ggFmy7Gd0tI2xU4H_j0pQcDCdKe7977TPULOEW4QIB88FOMnEJcMUF4BhwPSQ2AqkWmuDv_0x-QkxiUAClTQI9cjE97ozDSNDzQu5huzitQ0tHn1dFoMaRXqNTWUF6PZKTmq2q0_-6598nI3fh4WyfTxfjK8nSY2lbxJMg9KWmYc5sJbKzJXytQKaYWVPEeXgeHOInccQGGVecG8FA5Vbk2Vesb7ZNJxXW2WehsWaxM-dG0W-mtQh7k2oVnYldcOIUVuWzvItERnuFeSlbmpXKmYUy3romNtQ_2-87HRy3oX9k9qBjxXqDLOW9WgU9lQxxh89XMVQe_D1V24eh-ubsNtHdA5YqvczH345f5n-QRsQ3fm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037919633</pqid></control><display><type>article</type><title>Dark Matter signals at the LHC from a 3HDM</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Cordero, A. ; Hernandez-Sanchez, J. ; Keus, V. ; King, S. F. ; Moretti, S. ; Rojas, D. ; Sokolowska, D.</creator><creatorcontrib>Cordero, A. ; Hernandez-Sanchez, J. ; Keus, V. ; King, S. F. ; Moretti, S. ; Rojas, D. ; Sokolowska, D.</creatorcontrib><description>A bstract We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2 . The other two doublets are inert and do not develop a VEV, leading to a dark scalar sector controlled by Z 2 , with the lightest CP-even dark scalar H 1 being the DM candidate. This leads to the loop induced decay of the next-to-lightest scalar, H 2 → H 1 f f ¯ f = u , d , c , s , b , e , μ , τ , mediated by both dark CP-odd and charged scalars. This is a smoking-gun signal of the 3HDM since it is not allowed in the 2HDM with one inert doublet and is expected to be important when H 2 and H 1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, h → H 1 H 2 → H 1 H 1 f f ¯ into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel q q ¯ → H 1 H 1 Z ∗ → H 1 H 1 f f ¯ . We devise some benchmarks, compliant with collider, DM and cosmological data, for which the interplay between these modes is discussed. In particular, we show that the resulting detector signature, , with invariant mass of f f ¯ much smaller than m Z , can potentially be extracted already during Run 2 and 3. For example, the H 2 → H 1 γ * and γ * → e + e − case will give a spectacular QED mono-shower signal.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2018)030</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Beyond Standard Model ; Classical and Quantum Gravitation ; Dark matter ; Decay ; Elementary Particles ; Hadron-Hadron scattering (experiments) ; Higgs bosons ; Higgs physics ; High energy physics ; Large Hadron Collider ; Leptons ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Experimental Physics ; Relativity Theory ; Scalars ; String Theory ; Superconducting supercolliders</subject><ispartof>The journal of high energy physics, 2018-05, Vol.2018 (5), p.1-44, Article 30</ispartof><rights>The Author(s) 2018</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23</citedby><cites>FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23</cites><orcidid>0000-0002-0345-3414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2037919633/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2037919633?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Cordero, A.</creatorcontrib><creatorcontrib>Hernandez-Sanchez, J.</creatorcontrib><creatorcontrib>Keus, V.</creatorcontrib><creatorcontrib>King, S. F.</creatorcontrib><creatorcontrib>Moretti, S.</creatorcontrib><creatorcontrib>Rojas, D.</creatorcontrib><creatorcontrib>Sokolowska, D.</creatorcontrib><title>Dark Matter signals at the LHC from a 3HDM</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2 . The other two doublets are inert and do not develop a VEV, leading to a dark scalar sector controlled by Z 2 , with the lightest CP-even dark scalar H 1 being the DM candidate. This leads to the loop induced decay of the next-to-lightest scalar, H 2 → H 1 f f ¯ f = u , d , c , s , b , e , μ , τ , mediated by both dark CP-odd and charged scalars. This is a smoking-gun signal of the 3HDM since it is not allowed in the 2HDM with one inert doublet and is expected to be important when H 2 and H 1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, h → H 1 H 2 → H 1 H 1 f f ¯ into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel q q ¯ → H 1 H 1 Z ∗ → H 1 H 1 f f ¯ . We devise some benchmarks, compliant with collider, DM and cosmological data, for which the interplay between these modes is discussed. In particular, we show that the resulting detector signature, , with invariant mass of f f ¯ much smaller than m Z , can potentially be extracted already during Run 2 and 3. For example, the H 2 → H 1 γ * and γ * → e + e − case will give a spectacular QED mono-shower signal.</description><subject>Beyond Standard Model</subject><subject>Classical and Quantum Gravitation</subject><subject>Dark matter</subject><subject>Decay</subject><subject>Elementary Particles</subject><subject>Hadron-Hadron scattering (experiments)</subject><subject>Higgs bosons</subject><subject>Higgs physics</subject><subject>High energy physics</subject><subject>Large Hadron Collider</subject><subject>Leptons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Experimental Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><subject>Superconducting supercolliders</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDFPwzAQhS0EEqUws1piAaTQOztO7BG1hRS1ggFmy7Gd0tI2xU4H_j0pQcDCdKe7977TPULOEW4QIB88FOMnEJcMUF4BhwPSQ2AqkWmuDv_0x-QkxiUAClTQI9cjE97ozDSNDzQu5huzitQ0tHn1dFoMaRXqNTWUF6PZKTmq2q0_-6598nI3fh4WyfTxfjK8nSY2lbxJMg9KWmYc5sJbKzJXytQKaYWVPEeXgeHOInccQGGVecG8FA5Vbk2Vesb7ZNJxXW2WehsWaxM-dG0W-mtQh7k2oVnYldcOIUVuWzvItERnuFeSlbmpXKmYUy3romNtQ_2-87HRy3oX9k9qBjxXqDLOW9WgU9lQxxh89XMVQe_D1V24eh-ubsNtHdA5YqvczH345f5n-QRsQ3fm</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Cordero, A.</creator><creator>Hernandez-Sanchez, J.</creator><creator>Keus, V.</creator><creator>King, S. F.</creator><creator>Moretti, S.</creator><creator>Rojas, D.</creator><creator>Sokolowska, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0345-3414</orcidid></search><sort><creationdate>20180501</creationdate><title>Dark Matter signals at the LHC from a 3HDM</title><author>Cordero, A. ; Hernandez-Sanchez, J. ; Keus, V. ; King, S. F. ; Moretti, S. ; Rojas, D. ; Sokolowska, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beyond Standard Model</topic><topic>Classical and Quantum Gravitation</topic><topic>Dark matter</topic><topic>Decay</topic><topic>Elementary Particles</topic><topic>Hadron-Hadron scattering (experiments)</topic><topic>Higgs bosons</topic><topic>Higgs physics</topic><topic>High energy physics</topic><topic>Large Hadron Collider</topic><topic>Leptons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Experimental Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><topic>Superconducting supercolliders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordero, A.</creatorcontrib><creatorcontrib>Hernandez-Sanchez, J.</creatorcontrib><creatorcontrib>Keus, V.</creatorcontrib><creatorcontrib>King, S. F.</creatorcontrib><creatorcontrib>Moretti, S.</creatorcontrib><creatorcontrib>Rojas, D.</creatorcontrib><creatorcontrib>Sokolowska, D.</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordero, A.</au><au>Hernandez-Sanchez, J.</au><au>Keus, V.</au><au>King, S. F.</au><au>Moretti, S.</au><au>Rojas, D.</au><au>Sokolowska, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark Matter signals at the LHC from a 3HDM</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>2018</volume><issue>5</issue><spage>1</spage><epage>44</epage><pages>1-44</pages><artnum>30</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in a 3-Higgs Doublet Model (3HDM) where only one doublet acquires a Vacuum Expectation Value (VEV), preserving a parity Z 2 . The other two doublets are inert and do not develop a VEV, leading to a dark scalar sector controlled by Z 2 , with the lightest CP-even dark scalar H 1 being the DM candidate. This leads to the loop induced decay of the next-to-lightest scalar, H 2 → H 1 f f ¯ f = u , d , c , s , b , e , μ , τ , mediated by both dark CP-odd and charged scalars. This is a smoking-gun signal of the 3HDM since it is not allowed in the 2HDM with one inert doublet and is expected to be important when H 2 and H 1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, h → H 1 H 2 → H 1 H 1 f f ¯ into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel q q ¯ → H 1 H 1 Z ∗ → H 1 H 1 f f ¯ . We devise some benchmarks, compliant with collider, DM and cosmological data, for which the interplay between these modes is discussed. In particular, we show that the resulting detector signature, , with invariant mass of f f ¯ much smaller than m Z , can potentially be extracted already during Run 2 and 3. For example, the H 2 → H 1 γ * and γ * → e + e − case will give a spectacular QED mono-shower signal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP05(2018)030</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-0345-3414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2018-05, Vol.2018 (5), p.1-44, Article 30
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d10413c85d084b1da3e982b7afdb92d9
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Beyond Standard Model
Classical and Quantum Gravitation
Dark matter
Decay
Elementary Particles
Hadron-Hadron scattering (experiments)
Higgs bosons
Higgs physics
High energy physics
Large Hadron Collider
Leptons
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Experimental Physics
Relativity Theory
Scalars
String Theory
Superconducting supercolliders
title Dark Matter signals at the LHC from a 3HDM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20Matter%20signals%20at%20the%20LHC%20from%20a%203HDM&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cordero,%20A.&rft.date=2018-05-01&rft.volume=2018&rft.issue=5&rft.spage=1&rft.epage=44&rft.pages=1-44&rft.artnum=30&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2018)030&rft_dat=%3Cproquest_doaj_%3E2037919633%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-6e098c2ad175ecc56db84c58c5c8371d60a3dc13d30091f6e52e85d197caf4e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2037919633&rft_id=info:pmid/&rfr_iscdi=true