Loading…

Scale anomalies, states, and rates in conformal field theory

A bstract This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2017-04, Vol.2017 (4), p.1-33, Article 171
Main Authors: Gillioz, Marc, Lu, Xiaochuan, Luty, Markus A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53
cites cdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53
container_end_page 33
container_issue 4
container_start_page 1
container_title The journal of high energy physics
container_volume 2017
creator Gillioz, Marc
Lu, Xiaochuan
Luty, Markus A.
description A bstract This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.
doi_str_mv 10.1007/JHEP04(2017)171
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1165697dfe54865be3abe8f2e4ed1cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1165697dfe54865be3abe8f2e4ed1cc</doaj_id><sourcerecordid>1904221264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYsoqKtnrwUvCq470yZtCl5kWb8QFNRzSJOJduk2a9I9-N-bWhERPM0w_N6bZF6SHCGcI0A5u7tZPAI7yQDLUyxxK9lDyKqpYGW1_avfTfZDWAIgxwr2kosnrVpKVedWqm0onKWhV_1QVWdSP7Rp06Xaddb5iKS2odak_Rs5_3GQ7FjVBjr8rpPk5WrxPL-Z3j9c384v76eaceinJXKVc5PlSMYykdcAIAQKw6yp44xrskxzsrYyHDhUGnRZC825pQI1zyfJ7ehrnFrKtW9Wyn9Ipxr5NXD-VSrfN7olaRALXlSlscSZKHhNuapJ2IwYGdQ6ep2MXmvv3jcUerlqgqa2VR25TZDxKizLMCtYRI__oEu38V38qURR5XETsIGajZT2LgRP9ueBCHJIRo7JyCEZGZOJChgVIZLdK_lfvv9IPgG3Xo6e</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893116044</pqid></control><display><type>article</type><title>Scale anomalies, states, and rates in conformal field theory</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Gillioz, Marc ; Lu, Xiaochuan ; Luty, Markus A.</creator><creatorcontrib>Gillioz, Marc ; Lu, Xiaochuan ; Luty, Markus A.</creatorcontrib><description>A bstract This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2017)171</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Anomalies in Field and String Theories ; Classical and Quantum Gravitation ; Conformal Field Theory ; Elementary Particles ; Euclidean geometry ; Euclidean space ; Field theory ; Formalism ; High energy physics ; Lattice theory ; Logarithms ; Mathematical analysis ; Mathematical models ; Momentum ; Operators ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Sum rules</subject><ispartof>The journal of high energy physics, 2017-04, Vol.2017 (4), p.1-33, Article 171</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</citedby><cites>FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</cites><orcidid>0000-0001-8821-2574 ; 0000-0001-9220-4681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1893116044/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1893116044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Gillioz, Marc</creatorcontrib><creatorcontrib>Lu, Xiaochuan</creatorcontrib><creatorcontrib>Luty, Markus A.</creatorcontrib><title>Scale anomalies, states, and rates in conformal field theory</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.</description><subject>Anomalies</subject><subject>Anomalies in Field and String Theories</subject><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Theory</subject><subject>Elementary Particles</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Field theory</subject><subject>Formalism</subject><subject>High energy physics</subject><subject>Lattice theory</subject><subject>Logarithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Operators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Sum rules</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1LxDAQxYsoqKtnrwUvCq470yZtCl5kWb8QFNRzSJOJduk2a9I9-N-bWhERPM0w_N6bZF6SHCGcI0A5u7tZPAI7yQDLUyxxK9lDyKqpYGW1_avfTfZDWAIgxwr2kosnrVpKVedWqm0onKWhV_1QVWdSP7Rp06Xaddb5iKS2odak_Rs5_3GQ7FjVBjr8rpPk5WrxPL-Z3j9c384v76eaceinJXKVc5PlSMYykdcAIAQKw6yp44xrskxzsrYyHDhUGnRZC825pQI1zyfJ7ehrnFrKtW9Wyn9Ipxr5NXD-VSrfN7olaRALXlSlscSZKHhNuapJ2IwYGdQ6ep2MXmvv3jcUerlqgqa2VR25TZDxKizLMCtYRI__oEu38V38qURR5XETsIGajZT2LgRP9ueBCHJIRo7JyCEZGZOJChgVIZLdK_lfvv9IPgG3Xo6e</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Gillioz, Marc</creator><creator>Lu, Xiaochuan</creator><creator>Luty, Markus A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8821-2574</orcidid><orcidid>https://orcid.org/0000-0001-9220-4681</orcidid></search><sort><creationdate>20170401</creationdate><title>Scale anomalies, states, and rates in conformal field theory</title><author>Gillioz, Marc ; Lu, Xiaochuan ; Luty, Markus A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Anomalies in Field and String Theories</topic><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Theory</topic><topic>Elementary Particles</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Field theory</topic><topic>Formalism</topic><topic>High energy physics</topic><topic>Lattice theory</topic><topic>Logarithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Operators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Sum rules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillioz, Marc</creatorcontrib><creatorcontrib>Lu, Xiaochuan</creatorcontrib><creatorcontrib>Luty, Markus A.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillioz, Marc</au><au>Lu, Xiaochuan</au><au>Luty, Markus A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale anomalies, states, and rates in conformal field theory</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>2017</volume><issue>4</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>171</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2017)171</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-8821-2574</orcidid><orcidid>https://orcid.org/0000-0001-9220-4681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2017-04, Vol.2017 (4), p.1-33, Article 171
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1165697dfe54865be3abe8f2e4ed1cc
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Anomalies
Anomalies in Field and String Theories
Classical and Quantum Gravitation
Conformal Field Theory
Elementary Particles
Euclidean geometry
Euclidean space
Field theory
Formalism
High energy physics
Lattice theory
Logarithms
Mathematical analysis
Mathematical models
Momentum
Operators
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Sum rules
title Scale anomalies, states, and rates in conformal field theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale%20anomalies,%20states,%20and%20rates%20in%20conformal%20field%20theory&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Gillioz,%20Marc&rft.date=2017-04-01&rft.volume=2017&rft.issue=4&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=171&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2017)171&rft_dat=%3Cproquest_doaj_%3E1904221264%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893116044&rft_id=info:pmid/&rfr_iscdi=true