Loading…
Scale anomalies, states, and rates in conformal field theory
A bstract This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed...
Saved in:
Published in: | The journal of high energy physics 2017-04, Vol.2017 (4), p.1-33, Article 171 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53 |
container_end_page | 33 |
container_issue | 4 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2017 |
creator | Gillioz, Marc Lu, Xiaochuan Luty, Markus A. |
description | A
bstract
This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the
c
anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory. |
doi_str_mv | 10.1007/JHEP04(2017)171 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1165697dfe54865be3abe8f2e4ed1cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1165697dfe54865be3abe8f2e4ed1cc</doaj_id><sourcerecordid>1904221264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYsoqKtnrwUvCq470yZtCl5kWb8QFNRzSJOJduk2a9I9-N-bWhERPM0w_N6bZF6SHCGcI0A5u7tZPAI7yQDLUyxxK9lDyKqpYGW1_avfTfZDWAIgxwr2kosnrVpKVedWqm0onKWhV_1QVWdSP7Rp06Xaddb5iKS2odak_Rs5_3GQ7FjVBjr8rpPk5WrxPL-Z3j9c384v76eaceinJXKVc5PlSMYykdcAIAQKw6yp44xrskxzsrYyHDhUGnRZC825pQI1zyfJ7ehrnFrKtW9Wyn9Ipxr5NXD-VSrfN7olaRALXlSlscSZKHhNuapJ2IwYGdQ6ep2MXmvv3jcUerlqgqa2VR25TZDxKizLMCtYRI__oEu38V38qURR5XETsIGajZT2LgRP9ueBCHJIRo7JyCEZGZOJChgVIZLdK_lfvv9IPgG3Xo6e</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893116044</pqid></control><display><type>article</type><title>Scale anomalies, states, and rates in conformal field theory</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Gillioz, Marc ; Lu, Xiaochuan ; Luty, Markus A.</creator><creatorcontrib>Gillioz, Marc ; Lu, Xiaochuan ; Luty, Markus A.</creatorcontrib><description>A
bstract
This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the
c
anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2017)171</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Anomalies in Field and String Theories ; Classical and Quantum Gravitation ; Conformal Field Theory ; Elementary Particles ; Euclidean geometry ; Euclidean space ; Field theory ; Formalism ; High energy physics ; Lattice theory ; Logarithms ; Mathematical analysis ; Mathematical models ; Momentum ; Operators ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Sum rules</subject><ispartof>The journal of high energy physics, 2017-04, Vol.2017 (4), p.1-33, Article 171</ispartof><rights>The Author(s) 2017</rights><rights>The Author(s) 2017. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</citedby><cites>FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</cites><orcidid>0000-0001-8821-2574 ; 0000-0001-9220-4681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1893116044/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1893116044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Gillioz, Marc</creatorcontrib><creatorcontrib>Lu, Xiaochuan</creatorcontrib><creatorcontrib>Luty, Markus A.</creatorcontrib><title>Scale anomalies, states, and rates in conformal field theory</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the
c
anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.</description><subject>Anomalies</subject><subject>Anomalies in Field and String Theories</subject><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Theory</subject><subject>Elementary Particles</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Field theory</subject><subject>Formalism</subject><subject>High energy physics</subject><subject>Lattice theory</subject><subject>Logarithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Operators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Sum rules</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1LxDAQxYsoqKtnrwUvCq470yZtCl5kWb8QFNRzSJOJduk2a9I9-N-bWhERPM0w_N6bZF6SHCGcI0A5u7tZPAI7yQDLUyxxK9lDyKqpYGW1_avfTfZDWAIgxwr2kosnrVpKVedWqm0onKWhV_1QVWdSP7Rp06Xaddb5iKS2odak_Rs5_3GQ7FjVBjr8rpPk5WrxPL-Z3j9c384v76eaceinJXKVc5PlSMYykdcAIAQKw6yp44xrskxzsrYyHDhUGnRZC825pQI1zyfJ7ehrnFrKtW9Wyn9Ipxr5NXD-VSrfN7olaRALXlSlscSZKHhNuapJ2IwYGdQ6ep2MXmvv3jcUerlqgqa2VR25TZDxKizLMCtYRI__oEu38V38qURR5XETsIGajZT2LgRP9ueBCHJIRo7JyCEZGZOJChgVIZLdK_lfvv9IPgG3Xo6e</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Gillioz, Marc</creator><creator>Lu, Xiaochuan</creator><creator>Luty, Markus A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8821-2574</orcidid><orcidid>https://orcid.org/0000-0001-9220-4681</orcidid></search><sort><creationdate>20170401</creationdate><title>Scale anomalies, states, and rates in conformal field theory</title><author>Gillioz, Marc ; Lu, Xiaochuan ; Luty, Markus A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Anomalies in Field and String Theories</topic><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Theory</topic><topic>Elementary Particles</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Field theory</topic><topic>Formalism</topic><topic>High energy physics</topic><topic>Lattice theory</topic><topic>Logarithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Operators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Sum rules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillioz, Marc</creatorcontrib><creatorcontrib>Lu, Xiaochuan</creatorcontrib><creatorcontrib>Luty, Markus A.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillioz, Marc</au><au>Lu, Xiaochuan</au><au>Luty, Markus A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale anomalies, states, and rates in conformal field theory</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>2017</volume><issue>4</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>171</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the
c
anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2017)171</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-8821-2574</orcidid><orcidid>https://orcid.org/0000-0001-9220-4681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2017-04, Vol.2017 (4), p.1-33, Article 171 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d1165697dfe54865be3abe8f2e4ed1cc |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Anomalies Anomalies in Field and String Theories Classical and Quantum Gravitation Conformal Field Theory Elementary Particles Euclidean geometry Euclidean space Field theory Formalism High energy physics Lattice theory Logarithms Mathematical analysis Mathematical models Momentum Operators Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Sum rules |
title | Scale anomalies, states, and rates in conformal field theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale%20anomalies,%20states,%20and%20rates%20in%20conformal%20field%20theory&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Gillioz,%20Marc&rft.date=2017-04-01&rft.volume=2017&rft.issue=4&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=171&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2017)171&rft_dat=%3Cproquest_doaj_%3E1904221264%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-715a35d231edf483b0008818d4fdb1ed5cef4c5eff9d50509c0c7b8c55fe61c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893116044&rft_id=info:pmid/&rfr_iscdi=true |