Loading…

Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions

:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. : Fifty-f...

Full description

Saved in:
Bibliographic Details
Published in:Current oncology (Toronto) 2022-03, Vol.29 (3), p.1947-1966
Main Authors: Fusco, Roberta, Di Bernardo, Elio, Piccirillo, Adele, Rubulotta, Maria Rosaria, Petrosino, Teresa, Barretta, Maria Luisa, Mattace Raso, Mauro, Vallone, Paolo, Raiano, Concetta, Di Giacomo, Raimondo, Siani, Claudio, Avino, Franca, Scognamiglio, Giosuè, Di Bonito, Maurizio, Granata, Vincenza, Petrillo, Antonella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563
cites cdi_FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563
container_end_page 1966
container_issue 3
container_start_page 1947
container_title Current oncology (Toronto)
container_volume 29
creator Fusco, Roberta
Di Bernardo, Elio
Piccirillo, Adele
Rubulotta, Maria Rosaria
Petrosino, Teresa
Barretta, Maria Luisa
Mattace Raso, Mauro
Vallone, Paolo
Raiano, Concetta
Di Giacomo, Raimondo
Siani, Claudio
Avino, Franca
Scognamiglio, Giosuè
Di Bonito, Maurizio
Granata, Vincenza
Petrillo, Antonella
description :The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. : Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. : Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.
doi_str_mv 10.3390/curroncol29030159
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1541e52a547460dbbf1376fd0ca8de0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1541e52a547460dbbf1376fd0ca8de0</doaj_id><sourcerecordid>2642888542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563</originalsourceid><addsrcrecordid>eNplks9uEzEQxlcIREvhAbggH7kE_Gdt716QQhogUiqkqpwtrz27cbVrB9spzePxZjhNW7XiZHvm930zGk9VvSf4E2Mt_mx2MQZvwkhbzDDh7YvqlEjSzKSk7csn95PqTUrXGDMmpXxdnTDOKGO8Pa3-XmrrwuQM0t6iecyud8bpEa18hnF0A3gDaO71uE8uoT8ub9AV3OZdLMwF5OhMQsvbHLXJYFG3R4vgyyvl2dJvdBFbdKGnKQxRbzf7uyrne68PFR_IAgwecolcQgr-IEKrSQ_ODygHdA4ZTEZfIxzZ0lRhMlpDcsGnt9WrXo8J3t2fZ9Wvb8urxY_Z-uf31WK-npla8DwTTW0FdLUxnW4kh4ZyXEPf95QKyg2Qrm-FbamwXW86SkQnWiI70_ZWlFEJdlatjr426Gu1jW7Sca-CduouEOKgdBmfGUFZwmsCnGpey1pg23U9YVL0FhvdWMDF68vRa7vrJrAGDoMYn5k-z3i3UUO4UU1bS0lYMfh4bxDD7x2krCaXTPkw7SHskqKipk3T8JoWlBxRE0NKEfrHMgSrwxqp_9aoaD487e9R8bA37B_KbMxm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642888542</pqid></control><display><type>article</type><title>Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions</title><source>PubMed Central Free</source><creator>Fusco, Roberta ; Di Bernardo, Elio ; Piccirillo, Adele ; Rubulotta, Maria Rosaria ; Petrosino, Teresa ; Barretta, Maria Luisa ; Mattace Raso, Mauro ; Vallone, Paolo ; Raiano, Concetta ; Di Giacomo, Raimondo ; Siani, Claudio ; Avino, Franca ; Scognamiglio, Giosuè ; Di Bonito, Maurizio ; Granata, Vincenza ; Petrillo, Antonella</creator><creatorcontrib>Fusco, Roberta ; Di Bernardo, Elio ; Piccirillo, Adele ; Rubulotta, Maria Rosaria ; Petrosino, Teresa ; Barretta, Maria Luisa ; Mattace Raso, Mauro ; Vallone, Paolo ; Raiano, Concetta ; Di Giacomo, Raimondo ; Siani, Claudio ; Avino, Franca ; Scognamiglio, Giosuè ; Di Bonito, Maurizio ; Granata, Vincenza ; Petrillo, Antonella</creatorcontrib><description>:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. : Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. : Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.</description><identifier>ISSN: 1718-7729</identifier><identifier>ISSN: 1198-0052</identifier><identifier>EISSN: 1718-7729</identifier><identifier>DOI: 10.3390/curroncol29030159</identifier><identifier>PMID: 35323359</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Artificial Intelligence ; Benchmarking ; Contrast Media ; contrast-enhanced mammography ; Humans ; image enhancement ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mammography ; radiomics ; Retrospective Studies</subject><ispartof>Current oncology (Toronto), 2022-03, Vol.29 (3), p.1947-1966</ispartof><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563</citedby><cites>FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563</cites><orcidid>0000-0003-2465-5370 ; 0000-0002-6601-3221 ; 0000-0001-7584-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947713/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947713/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35323359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fusco, Roberta</creatorcontrib><creatorcontrib>Di Bernardo, Elio</creatorcontrib><creatorcontrib>Piccirillo, Adele</creatorcontrib><creatorcontrib>Rubulotta, Maria Rosaria</creatorcontrib><creatorcontrib>Petrosino, Teresa</creatorcontrib><creatorcontrib>Barretta, Maria Luisa</creatorcontrib><creatorcontrib>Mattace Raso, Mauro</creatorcontrib><creatorcontrib>Vallone, Paolo</creatorcontrib><creatorcontrib>Raiano, Concetta</creatorcontrib><creatorcontrib>Di Giacomo, Raimondo</creatorcontrib><creatorcontrib>Siani, Claudio</creatorcontrib><creatorcontrib>Avino, Franca</creatorcontrib><creatorcontrib>Scognamiglio, Giosuè</creatorcontrib><creatorcontrib>Di Bonito, Maurizio</creatorcontrib><creatorcontrib>Granata, Vincenza</creatorcontrib><creatorcontrib>Petrillo, Antonella</creatorcontrib><title>Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions</title><title>Current oncology (Toronto)</title><addtitle>Curr Oncol</addtitle><description>:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. : Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. : Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.</description><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Contrast Media</subject><subject>contrast-enhanced mammography</subject><subject>Humans</subject><subject>image enhancement</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mammography</subject><subject>radiomics</subject><subject>Retrospective Studies</subject><issn>1718-7729</issn><issn>1198-0052</issn><issn>1718-7729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplks9uEzEQxlcIREvhAbggH7kE_Gdt716QQhogUiqkqpwtrz27cbVrB9spzePxZjhNW7XiZHvm930zGk9VvSf4E2Mt_mx2MQZvwkhbzDDh7YvqlEjSzKSk7csn95PqTUrXGDMmpXxdnTDOKGO8Pa3-XmrrwuQM0t6iecyud8bpEa18hnF0A3gDaO71uE8uoT8ub9AV3OZdLMwF5OhMQsvbHLXJYFG3R4vgyyvl2dJvdBFbdKGnKQxRbzf7uyrne68PFR_IAgwecolcQgr-IEKrSQ_ODygHdA4ZTEZfIxzZ0lRhMlpDcsGnt9WrXo8J3t2fZ9Wvb8urxY_Z-uf31WK-npla8DwTTW0FdLUxnW4kh4ZyXEPf95QKyg2Qrm-FbamwXW86SkQnWiI70_ZWlFEJdlatjr426Gu1jW7Sca-CduouEOKgdBmfGUFZwmsCnGpey1pg23U9YVL0FhvdWMDF68vRa7vrJrAGDoMYn5k-z3i3UUO4UU1bS0lYMfh4bxDD7x2krCaXTPkw7SHskqKipk3T8JoWlBxRE0NKEfrHMgSrwxqp_9aoaD487e9R8bA37B_KbMxm</recordid><startdate>20220313</startdate><enddate>20220313</enddate><creator>Fusco, Roberta</creator><creator>Di Bernardo, Elio</creator><creator>Piccirillo, Adele</creator><creator>Rubulotta, Maria Rosaria</creator><creator>Petrosino, Teresa</creator><creator>Barretta, Maria Luisa</creator><creator>Mattace Raso, Mauro</creator><creator>Vallone, Paolo</creator><creator>Raiano, Concetta</creator><creator>Di Giacomo, Raimondo</creator><creator>Siani, Claudio</creator><creator>Avino, Franca</creator><creator>Scognamiglio, Giosuè</creator><creator>Di Bonito, Maurizio</creator><creator>Granata, Vincenza</creator><creator>Petrillo, Antonella</creator><general>MDPI</general><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2465-5370</orcidid><orcidid>https://orcid.org/0000-0002-6601-3221</orcidid><orcidid>https://orcid.org/0000-0001-7584-2569</orcidid></search><sort><creationdate>20220313</creationdate><title>Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions</title><author>Fusco, Roberta ; Di Bernardo, Elio ; Piccirillo, Adele ; Rubulotta, Maria Rosaria ; Petrosino, Teresa ; Barretta, Maria Luisa ; Mattace Raso, Mauro ; Vallone, Paolo ; Raiano, Concetta ; Di Giacomo, Raimondo ; Siani, Claudio ; Avino, Franca ; Scognamiglio, Giosuè ; Di Bonito, Maurizio ; Granata, Vincenza ; Petrillo, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Contrast Media</topic><topic>contrast-enhanced mammography</topic><topic>Humans</topic><topic>image enhancement</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mammography</topic><topic>radiomics</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fusco, Roberta</creatorcontrib><creatorcontrib>Di Bernardo, Elio</creatorcontrib><creatorcontrib>Piccirillo, Adele</creatorcontrib><creatorcontrib>Rubulotta, Maria Rosaria</creatorcontrib><creatorcontrib>Petrosino, Teresa</creatorcontrib><creatorcontrib>Barretta, Maria Luisa</creatorcontrib><creatorcontrib>Mattace Raso, Mauro</creatorcontrib><creatorcontrib>Vallone, Paolo</creatorcontrib><creatorcontrib>Raiano, Concetta</creatorcontrib><creatorcontrib>Di Giacomo, Raimondo</creatorcontrib><creatorcontrib>Siani, Claudio</creatorcontrib><creatorcontrib>Avino, Franca</creatorcontrib><creatorcontrib>Scognamiglio, Giosuè</creatorcontrib><creatorcontrib>Di Bonito, Maurizio</creatorcontrib><creatorcontrib>Granata, Vincenza</creatorcontrib><creatorcontrib>Petrillo, Antonella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Current oncology (Toronto)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fusco, Roberta</au><au>Di Bernardo, Elio</au><au>Piccirillo, Adele</au><au>Rubulotta, Maria Rosaria</au><au>Petrosino, Teresa</au><au>Barretta, Maria Luisa</au><au>Mattace Raso, Mauro</au><au>Vallone, Paolo</au><au>Raiano, Concetta</au><au>Di Giacomo, Raimondo</au><au>Siani, Claudio</au><au>Avino, Franca</au><au>Scognamiglio, Giosuè</au><au>Di Bonito, Maurizio</au><au>Granata, Vincenza</au><au>Petrillo, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions</atitle><jtitle>Current oncology (Toronto)</jtitle><addtitle>Curr Oncol</addtitle><date>2022-03-13</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><spage>1947</spage><epage>1966</epage><pages>1947-1966</pages><issn>1718-7729</issn><issn>1198-0052</issn><eissn>1718-7729</eissn><abstract>:The purpose of this study was to discriminate between benign and malignant breast lesions through several classifiers using, as predictors, radiomic metrics extracted from CEM and DCE-MRI images. In order to optimize the analysis, balancing and feature selection procedures were performed. : Fifty-four patients with 79 histo-pathologically proven breast lesions (48 malignant lesions and 31 benign lesions) underwent both CEM and DCE-MRI. The lesions were retrospectively analyzed with radiomic and artificial intelligence approaches. Forty-eight textural metrics were extracted, and univariate and multivariate analyses were performed: non-parametric statistical test, receiver operating characteristic (ROC) and machine learning classifiers. : Considering the single metrics extracted from CEM, the best predictors were KURTOSIS (area under ROC curve (AUC) = 0.71) and SKEWNESS (AUC = 0.71) calculated on late MLO view. Considering the features calculated from DCE-MRI, the best predictors were RANGE (AUC = 0.72), ENERGY (AUC = 0.72), ENTROPY (AUC = 0.70) and GLN (gray-level nonuniformity) of the gray-level run-length matrix (AUC = 0.72). Considering the analysis with classifiers and an unbalanced dataset, no significant results were obtained. After the balancing and feature selection procedures, higher values of accuracy, specificity and AUC were reached. The best performance was obtained considering 18 robust features among all metrics derived from CEM and DCE-MRI, using a linear discriminant analysis (accuracy of 0.84 and AUC = 0.88). Classifiers, adjusted with adaptive synthetic sampling and feature selection, allowed for increased diagnostic performance of CEM and DCE-MRI in the differentiation between benign and malignant lesions.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>35323359</pmid><doi>10.3390/curroncol29030159</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2465-5370</orcidid><orcidid>https://orcid.org/0000-0002-6601-3221</orcidid><orcidid>https://orcid.org/0000-0001-7584-2569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1718-7729
ispartof Current oncology (Toronto), 2022-03, Vol.29 (3), p.1947-1966
issn 1718-7729
1198-0052
1718-7729
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1541e52a547460dbbf1376fd0ca8de0
source PubMed Central Free
subjects Artificial Intelligence
Benchmarking
Contrast Media
contrast-enhanced mammography
Humans
image enhancement
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mammography
radiomics
Retrospective Studies
title Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomic%20and%20Artificial%20Intelligence%20Analysis%20with%20Textural%20Metrics%20Extracted%20by%20Contrast-Enhanced%20Mammography%20and%20Dynamic%20Contrast%20Magnetic%20Resonance%20Imaging%20to%20Detect%20Breast%20Malignant%20Lesions&rft.jtitle=Current%20oncology%20(Toronto)&rft.au=Fusco,%20Roberta&rft.date=2022-03-13&rft.volume=29&rft.issue=3&rft.spage=1947&rft.epage=1966&rft.pages=1947-1966&rft.issn=1718-7729&rft.eissn=1718-7729&rft_id=info:doi/10.3390/curroncol29030159&rft_dat=%3Cproquest_doaj_%3E2642888542%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-684d6eb4ccba875e82504efff22625ce1bf96d926dbfcb216b6917bc9fd633563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642888542&rft_id=info:pmid/35323359&rfr_iscdi=true