Loading…
Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-Band Wi-Fi
In this paper, we propose a hybrid localization algorithm to boost the accuracy of range-based localization by improving the ranging accuracy under indoor non-line-of-sight (NLOS) conditions. We replaced the ranging part of the rule-based localization method with a deep regression model that uses da...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (16), p.5583 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a hybrid localization algorithm to boost the accuracy of range-based localization by improving the ranging accuracy under indoor non-line-of-sight (NLOS) conditions. We replaced the ranging part of the rule-based localization method with a deep regression model that uses data-driven learning with dual-band received signal strength (RSS). The ranging error caused by the NLOS conditions was effectively reduced by using the deep regression method. As a consequence, the positioning error could be reduced under NLOS conditions. The performance of the proposed method was verified through a ray-tracing-based simulation for indoor spaces. The proposed scheme showed a reduction in the positioning error of at least 22.3% in terms of the median root mean square error compared to the existing methods. In addition, we verified that the proposed method was robust to changes in the indoor structure. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21165583 |