Loading…
Reducing System Load of Effective Video Using a Network Model
Recently, as non-face-to-face work has become more common, the development of streaming services has become a significant issue. As these services are applied in increasingly diverse fields, various problems are caused by the overloading of systems when users try to transmit high-quality images. In...
Saved in:
Published in: | Applied sciences 2021-10, Vol.11 (20), p.9665 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, as non-face-to-face work has become more common, the development of streaming services has become a significant issue. As these services are applied in increasingly diverse fields, various problems are caused by the overloading of systems when users try to transmit high-quality images. In this paper, SRGAN (Super Resolution Generative Adversarial Network) and DAIN (Depth-Aware Video Frame Interpolation) deep learning were used to reduce the overload that occurs during real-time video transmission. Images were divided into a FoV (Field of view) region and a non-FoV (Non-Field of view) region, and SRGAN was applied to the former, DAIN to the latter. Through this process, image quality was improved and system load was reduced. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11209665 |