Loading…
A Steric “Ball-and-Chain” Mechanism for pH-Mediated Regulation of Gap Junction Channels
Gap junction channels (GJCs) mediate intercellular communication and are gated by numerous conditions such as pH. The electron cryomicroscopy (cryo-EM) structure of Cx26 GJC at physiological pH recapitulates previous GJC structures in lipid bilayers. At pH 6.4, we identify two conformational states,...
Saved in:
Published in: | Cell reports (Cambridge) 2020-04, Vol.31 (3), p.107482-107482, Article 107482 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gap junction channels (GJCs) mediate intercellular communication and are gated by numerous conditions such as pH. The electron cryomicroscopy (cryo-EM) structure of Cx26 GJC at physiological pH recapitulates previous GJC structures in lipid bilayers. At pH 6.4, we identify two conformational states, one resembling the open physiological-pH structure and a closed conformation that displays six threads of density, that join to form a pore-occluding density. Crosslinking and hydrogen-deuterium exchange mass spectrometry reveal closer association between the N-terminal (NT) domains and the cytoplasmic loops (CL) at acidic pH. Previous electrophysiologic studies suggest an association between NT residue N14 and H100 near M2, which may trigger the observed movement of M2 toward M1 in our cryo-EM maps, thereby accounting for additional NT-CL crosslinks at acidic pH. We propose that these pH-induced interactions and conformational changes result in extension, ordering, and association of the acetylated NT domains to form a hexameric “ball-and-chain” gating particle.
[Display omitted]
•pH gating of human Cx26 gap junction channels occurs through a “ball-and-chain” mechanism•Gating involves cooperation of all subunits within each hexamer of the junctional channel•In acidic pH, acetylated N termini favor an extended conformation that occludes the pore
During tissue injury, acidic pH blocks gap junction channel intercellular communication. Khan et al. use cryo-EM and mass spectrometry to show that acidification causes extension, ordering, and association of the N-terminal domains to form a hexameric gating particle that sterically occludes the human Cx26 gap junction channel pore. |
---|---|
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2020.03.046 |