Loading…
FTO is necessary for the induction of leptin resistance by high-fat feeding
Abstract Objective Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FT...
Saved in:
Published in: | Molecular metabolism (Germany) 2015-04, Vol.4 (4), p.287-298 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Objective Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD. Methods We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin. Using transcriptomic analysis of hypothalamic tissue to identify relevant pathways affected by the loss of Fto , we combined data from co-immunoprecipitation, yeast 2-hybrid and luciferase reporter assays to identify mechanisms through which FTO can influence the development of leptin resistant states. Results Mice deficient in Fto significantly increased their fat mass in response to HFD. Fto+/− and Fto−/− mice remained sensitive to the anorexigenic effects of leptin, both after exposure to a HFD or after acute central application of palmitate. Genes encoding components of the NFкB signalling pathway were down-regulated in the hypothalami of Fto -deficient mice following a HFD. When this pathway was reactivated in Fto -deficient mice with a single low central dose of TNFα, the mice became less sensitive to the effect of leptin. We identified a transcriptional coactivator of NFкB, TRIP4, as a binding partner of FTO and a molecule that is required for TRIP4 dependent transactivation of NFкB. Conclusions Our study demonstrates that, independent of body weight, Fto influences the metabolic outcomes of a HFD through alteration of hypothalamic NFкB signalling. This supports the notion that pharmacological modulation of FTO activity might have the potential for therapeutic benefit in improving leptin sensitivity, in a manner that is influenced by the nutritional environment. |
---|---|
ISSN: | 2212-8778 2212-8778 |
DOI: | 10.1016/j.molmet.2015.01.011 |