Loading…

EELGRASS MAPPING WITH SENTINEL-2 AND UAV DATA IN PRINCE EDWARD ISLAND (CANADA)

Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. Eelgrass beds provide a variety of important ecosystem services, and while it is considered an important marine species, little research has been done to understand its distribution and loca...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2021-06, Vol.V-3-2021, p.125-132
Main Authors: Gallant, E., LaRocque, A., Leblon, B., Douglas, A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 132
container_issue
container_start_page 125
container_title ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
container_volume V-3-2021
creator Gallant, E.
LaRocque, A.
Leblon, B.
Douglas, A.
description Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. Eelgrass beds provide a variety of important ecosystem services, and while it is considered an important marine species, little research has been done to understand its distribution and location within Atlantic Canada. The purpose of this study was to assess the capability of Sentinel-2 and UAV imagery to map the presence of eelgrass beds within the Souris River in Prince Edward Island. Both imageries were classified using the non-parametric Random Forests (RF) supervised classifier and the resulting classification was validated using sonar data. The Sentinel-2 classified image had a lower validation accuracy at 77.7%, while the UAV classified image had a validation accuracy of 90.9%. The limitations of the study and recommendations for future work are also presented.
doi_str_mv 10.5194/isprs-annals-V-3-2021-125-2021
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d18e061e5d01436ab450c440e2d7ca2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d18e061e5d01436ab450c440e2d7ca2b</doaj_id><sourcerecordid>2541984847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2751-c9915d685db5444bb242f25109077c86eca4bc9a4107aad10448ff2ba48f3db83</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYMoOHTfISCIPkSTNGmbFyGsdSvUOtZuewxp2krHXGe6Pfjt7R8Rn87hcjj3cn8A3BP8xIlgz3V7tC3Sh4Pet2iDHEQxJYhQPpgLMKFdCgnM8eU_fw2mbbvDGBOPCyHoBCRhGM9XMk3hm1wuo2QOt1G2gGmYZFESxohCmQRwLTcwkJmEUQKXqyiZhTAMtnIVwCiN-8DDTCYykI-34KrqLiqnv3oD1q9hNlug-H0ezWSMDPU4QUYIwgvX50XOGWN5ThmtKCdYYM8zvlsazXIjNCPY07ogmDG_qmiuO3GK3HduQDT2Fo3eqaOtP7X9Vo2u1TBo7IfS9lSbfakK4pfYJSUvMGGOq3PGsWEMl7TwjKZ513U3dh1t83Uu25PaNWfbP1ZRzojwmc-8LvUypoxt2taW1d9WglWPRA1I1IhEbZSjehKqQzIY5weP03pl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541984847</pqid></control><display><type>article</type><title>EELGRASS MAPPING WITH SENTINEL-2 AND UAV DATA IN PRINCE EDWARD ISLAND (CANADA)</title><source>Publicly Available Content Database</source><creator>Gallant, E. ; LaRocque, A. ; Leblon, B. ; Douglas, A.</creator><creatorcontrib>Gallant, E. ; LaRocque, A. ; Leblon, B. ; Douglas, A.</creatorcontrib><description>Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. Eelgrass beds provide a variety of important ecosystem services, and while it is considered an important marine species, little research has been done to understand its distribution and location within Atlantic Canada. The purpose of this study was to assess the capability of Sentinel-2 and UAV imagery to map the presence of eelgrass beds within the Souris River in Prince Edward Island. Both imageries were classified using the non-parametric Random Forests (RF) supervised classifier and the resulting classification was validated using sonar data. The Sentinel-2 classified image had a lower validation accuracy at 77.7%, while the UAV classified image had a validation accuracy of 90.9%. The limitations of the study and recommendations for future work are also presented.</description><identifier>ISSN: 2194-9050</identifier><identifier>ISSN: 2194-9042</identifier><identifier>EISSN: 2194-9050</identifier><identifier>DOI: 10.5194/isprs-annals-V-3-2021-125-2021</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Aquatic plants ; Autonomous underwater vehicles ; Cameras ; Coastal zone ; Ecosystem services ; Environmental conditions ; Image classification ; Marine ecosystems ; Satellites ; Unmanned aerial vehicles ; Watersheds</subject><ispartof>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2021-06, Vol.V-3-2021, p.125-132</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2541984847?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gallant, E.</creatorcontrib><creatorcontrib>LaRocque, A.</creatorcontrib><creatorcontrib>Leblon, B.</creatorcontrib><creatorcontrib>Douglas, A.</creatorcontrib><title>EELGRASS MAPPING WITH SENTINEL-2 AND UAV DATA IN PRINCE EDWARD ISLAND (CANADA)</title><title>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</title><description>Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. Eelgrass beds provide a variety of important ecosystem services, and while it is considered an important marine species, little research has been done to understand its distribution and location within Atlantic Canada. The purpose of this study was to assess the capability of Sentinel-2 and UAV imagery to map the presence of eelgrass beds within the Souris River in Prince Edward Island. Both imageries were classified using the non-parametric Random Forests (RF) supervised classifier and the resulting classification was validated using sonar data. The Sentinel-2 classified image had a lower validation accuracy at 77.7%, while the UAV classified image had a validation accuracy of 90.9%. The limitations of the study and recommendations for future work are also presented.</description><subject>Aquatic plants</subject><subject>Autonomous underwater vehicles</subject><subject>Cameras</subject><subject>Coastal zone</subject><subject>Ecosystem services</subject><subject>Environmental conditions</subject><subject>Image classification</subject><subject>Marine ecosystems</subject><subject>Satellites</subject><subject>Unmanned aerial vehicles</subject><subject>Watersheds</subject><issn>2194-9050</issn><issn>2194-9042</issn><issn>2194-9050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYMoOHTfISCIPkSTNGmbFyGsdSvUOtZuewxp2krHXGe6Pfjt7R8Rn87hcjj3cn8A3BP8xIlgz3V7tC3Sh4Pet2iDHEQxJYhQPpgLMKFdCgnM8eU_fw2mbbvDGBOPCyHoBCRhGM9XMk3hm1wuo2QOt1G2gGmYZFESxohCmQRwLTcwkJmEUQKXqyiZhTAMtnIVwCiN-8DDTCYykI-34KrqLiqnv3oD1q9hNlug-H0ezWSMDPU4QUYIwgvX50XOGWN5ThmtKCdYYM8zvlsazXIjNCPY07ogmDG_qmiuO3GK3HduQDT2Fo3eqaOtP7X9Vo2u1TBo7IfS9lSbfakK4pfYJSUvMGGOq3PGsWEMl7TwjKZ513U3dh1t83Uu25PaNWfbP1ZRzojwmc-8LvUypoxt2taW1d9WglWPRA1I1IhEbZSjehKqQzIY5weP03pl</recordid><startdate>20210617</startdate><enddate>20210617</enddate><creator>Gallant, E.</creator><creator>LaRocque, A.</creator><creator>Leblon, B.</creator><creator>Douglas, A.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20210617</creationdate><title>EELGRASS MAPPING WITH SENTINEL-2 AND UAV DATA IN PRINCE EDWARD ISLAND (CANADA)</title><author>Gallant, E. ; LaRocque, A. ; Leblon, B. ; Douglas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2751-c9915d685db5444bb242f25109077c86eca4bc9a4107aad10448ff2ba48f3db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic plants</topic><topic>Autonomous underwater vehicles</topic><topic>Cameras</topic><topic>Coastal zone</topic><topic>Ecosystem services</topic><topic>Environmental conditions</topic><topic>Image classification</topic><topic>Marine ecosystems</topic><topic>Satellites</topic><topic>Unmanned aerial vehicles</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallant, E.</creatorcontrib><creatorcontrib>LaRocque, A.</creatorcontrib><creatorcontrib>Leblon, B.</creatorcontrib><creatorcontrib>Douglas, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallant, E.</au><au>LaRocque, A.</au><au>Leblon, B.</au><au>Douglas, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EELGRASS MAPPING WITH SENTINEL-2 AND UAV DATA IN PRINCE EDWARD ISLAND (CANADA)</atitle><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle><date>2021-06-17</date><risdate>2021</risdate><volume>V-3-2021</volume><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>2194-9050</issn><issn>2194-9042</issn><eissn>2194-9050</eissn><abstract>Eelgrass (Zostera marina L.) is a marine angiosperm that grows throughout coastal regions in Atlantic Canada. Eelgrass beds provide a variety of important ecosystem services, and while it is considered an important marine species, little research has been done to understand its distribution and location within Atlantic Canada. The purpose of this study was to assess the capability of Sentinel-2 and UAV imagery to map the presence of eelgrass beds within the Souris River in Prince Edward Island. Both imageries were classified using the non-parametric Random Forests (RF) supervised classifier and the resulting classification was validated using sonar data. The Sentinel-2 classified image had a lower validation accuracy at 77.7%, while the UAV classified image had a validation accuracy of 90.9%. The limitations of the study and recommendations for future work are also presented.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-annals-V-3-2021-125-2021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9050
ispartof ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2021-06, Vol.V-3-2021, p.125-132
issn 2194-9050
2194-9042
2194-9050
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d18e061e5d01436ab450c440e2d7ca2b
source Publicly Available Content Database
subjects Aquatic plants
Autonomous underwater vehicles
Cameras
Coastal zone
Ecosystem services
Environmental conditions
Image classification
Marine ecosystems
Satellites
Unmanned aerial vehicles
Watersheds
title EELGRASS MAPPING WITH SENTINEL-2 AND UAV DATA IN PRINCE EDWARD ISLAND (CANADA)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EELGRASS%20MAPPING%20WITH%20SENTINEL-2%20AND%20UAV%20DATA%20IN%20PRINCE%20EDWARD%20ISLAND%20(CANADA)&rft.jtitle=ISPRS%20annals%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences&rft.au=Gallant,%20E.&rft.date=2021-06-17&rft.volume=V-3-2021&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=2194-9050&rft.eissn=2194-9050&rft_id=info:doi/10.5194/isprs-annals-V-3-2021-125-2021&rft_dat=%3Cproquest_doaj_%3E2541984847%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2751-c9915d685db5444bb242f25109077c86eca4bc9a4107aad10448ff2ba48f3db83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541984847&rft_id=info:pmid/&rfr_iscdi=true