Loading…

The Complexity of the Arterial Blood Pressure Regulation during the Stress Test

In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2022-05, Vol.12 (5), p.1256
Main Authors: Qammar, Naseha Wafa, Orinaitė, Ugnė, Šiaučiūnaitė, Vaiva, Vainoras, Alfonsas, Šakalytė, Gintarė, Ragulskis, Minvydas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933
cites cdi_FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933
container_end_page
container_issue 5
container_start_page 1256
container_title Diagnostics (Basel)
container_volume 12
creator Qammar, Naseha Wafa
Orinaitė, Ugnė
Šiaučiūnaitė, Vaiva
Vainoras, Alfonsas
Šakalytė, Gintarė
Ragulskis, Minvydas
description In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years; height 178.88 ± 0.071 m; weight 80.53 ± 10.01 kg; body mass index 25.10 ± 2.06 kg/m2. Machine learning algorithms are employed to build a set of rules for the classification of the performance during the stress test. The heart rate, the JT interval, and the blood pressure readings are observed during the load and the recovery phases of the exercise. Although it is obvious that the two groups of persons will behave differently throughout the bicycle stress test, with this novel study, we are able to detect subtle variations in the rate at which these changes occur. This paper proves that these differences are measurable and substantial to detect subtle differences in the self-organization of the human cardiovascular system. It is shown that the data collected during the load phase of the stress test plays a more significant role than the data collected during the recovery phase. The data collected from the two groups of persons are approximated by Gaussian distribution. The introduced classification algorithm based on the statistical analysis and the triangle coordinate system helps to determine whether the reaction of the cardiovascular system of a new candidate is more pronounced by an increased heart rate or an increased blood pressure during the stress test. The developed approach produces valuable information about the self-organization of human cardiovascular system during a physical exercise.
doi_str_mv 10.3390/diagnostics12051256
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d18ebef0285f432bac42cac8779b92ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d18ebef0285f432bac42cac8779b92ca</doaj_id><sourcerecordid>2671269736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933</originalsourceid><addsrcrecordid>eNptkV1rFDEUhoMottT-AkEGvPFma74mk9wIdam2UKi063XIZE6mWbKTNcmI_ffNdmtpxdzk8J73PJwPhN4TfMKYwp8Hb8Yp5uJtJhS3hLbiFTqkuGsXnBP5-ll8gI5zXuP6FGGStm_RAWsFFZzgQ3S1uoVmGTfbAH98uWuia0pVTlOB5E1ovoYYh-ZHgpznBM01jHMwxcepGebkp_HBfVN2-WYFubxDb5wJGY4f_yP089vZanm-uLz6frE8vVxYrlRZMK661hHZOSmEtdRwRSQQwD1mikrZit4SqAp1veQCOKkigMEAjg-KsSN0secO0az1NvmNSXc6Gq8fhJhGbVLdTgA9VHIPDlPZOs5obyyn1ljZdapXNaqsL3vWdu43MFiYSjLhBfRlZvK3eoy_tSKcsBZXwKdHQIq_5roFvfHZQghmgjhnTUVHqFAdE9X68R_rOs5pqqvauTBhnaK76djeZVPMOYF7aoZgvbu__s_9a9WH53M81fy9NrsHuXOuyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670137923</pqid></control><display><type>article</type><title>The Complexity of the Arterial Blood Pressure Regulation during the Stress Test</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Qammar, Naseha Wafa ; Orinaitė, Ugnė ; Šiaučiūnaitė, Vaiva ; Vainoras, Alfonsas ; Šakalytė, Gintarė ; Ragulskis, Minvydas</creator><creatorcontrib>Qammar, Naseha Wafa ; Orinaitė, Ugnė ; Šiaučiūnaitė, Vaiva ; Vainoras, Alfonsas ; Šakalytė, Gintarė ; Ragulskis, Minvydas</creatorcontrib><description>In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years; height 178.88 ± 0.071 m; weight 80.53 ± 10.01 kg; body mass index 25.10 ± 2.06 kg/m2. Machine learning algorithms are employed to build a set of rules for the classification of the performance during the stress test. The heart rate, the JT interval, and the blood pressure readings are observed during the load and the recovery phases of the exercise. Although it is obvious that the two groups of persons will behave differently throughout the bicycle stress test, with this novel study, we are able to detect subtle variations in the rate at which these changes occur. This paper proves that these differences are measurable and substantial to detect subtle differences in the self-organization of the human cardiovascular system. It is shown that the data collected during the load phase of the stress test plays a more significant role than the data collected during the recovery phase. The data collected from the two groups of persons are approximated by Gaussian distribution. The introduced classification algorithm based on the statistical analysis and the triangle coordinate system helps to determine whether the reaction of the cardiovascular system of a new candidate is more pronounced by an increased heart rate or an increased blood pressure during the stress test. The developed approach produces valuable information about the self-organization of human cardiovascular system during a physical exercise.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics12051256</identifier><identifier>PMID: 35626410</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>arterial blood pressure ; Automation ; Blood pressure ; cardiac intercals ; Cardiac stress tests ; Cardiovascular system ; Catecholamines ; Electrocardiography ; Exercise ; Heart rate ; Human body ; Hypertension ; Machine learning ; Nervous system ; Normal distribution ; stress test</subject><ispartof>Diagnostics (Basel), 2022-05, Vol.12 (5), p.1256</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933</citedby><cites>FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933</cites><orcidid>0000-0003-2753-6035 ; 0000-0001-9987-6325 ; 0000-0002-5732-8520 ; 0000-0002-3348-9717 ; 0000-0002-7579-9086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670137923/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670137923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35626410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qammar, Naseha Wafa</creatorcontrib><creatorcontrib>Orinaitė, Ugnė</creatorcontrib><creatorcontrib>Šiaučiūnaitė, Vaiva</creatorcontrib><creatorcontrib>Vainoras, Alfonsas</creatorcontrib><creatorcontrib>Šakalytė, Gintarė</creatorcontrib><creatorcontrib>Ragulskis, Minvydas</creatorcontrib><title>The Complexity of the Arterial Blood Pressure Regulation during the Stress Test</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years; height 178.88 ± 0.071 m; weight 80.53 ± 10.01 kg; body mass index 25.10 ± 2.06 kg/m2. Machine learning algorithms are employed to build a set of rules for the classification of the performance during the stress test. The heart rate, the JT interval, and the blood pressure readings are observed during the load and the recovery phases of the exercise. Although it is obvious that the two groups of persons will behave differently throughout the bicycle stress test, with this novel study, we are able to detect subtle variations in the rate at which these changes occur. This paper proves that these differences are measurable and substantial to detect subtle differences in the self-organization of the human cardiovascular system. It is shown that the data collected during the load phase of the stress test plays a more significant role than the data collected during the recovery phase. The data collected from the two groups of persons are approximated by Gaussian distribution. The introduced classification algorithm based on the statistical analysis and the triangle coordinate system helps to determine whether the reaction of the cardiovascular system of a new candidate is more pronounced by an increased heart rate or an increased blood pressure during the stress test. The developed approach produces valuable information about the self-organization of human cardiovascular system during a physical exercise.</description><subject>arterial blood pressure</subject><subject>Automation</subject><subject>Blood pressure</subject><subject>cardiac intercals</subject><subject>Cardiac stress tests</subject><subject>Cardiovascular system</subject><subject>Catecholamines</subject><subject>Electrocardiography</subject><subject>Exercise</subject><subject>Heart rate</subject><subject>Human body</subject><subject>Hypertension</subject><subject>Machine learning</subject><subject>Nervous system</subject><subject>Normal distribution</subject><subject>stress test</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkV1rFDEUhoMottT-AkEGvPFma74mk9wIdam2UKi063XIZE6mWbKTNcmI_ffNdmtpxdzk8J73PJwPhN4TfMKYwp8Hb8Yp5uJtJhS3hLbiFTqkuGsXnBP5-ll8gI5zXuP6FGGStm_RAWsFFZzgQ3S1uoVmGTfbAH98uWuia0pVTlOB5E1ovoYYh-ZHgpznBM01jHMwxcepGebkp_HBfVN2-WYFubxDb5wJGY4f_yP089vZanm-uLz6frE8vVxYrlRZMK661hHZOSmEtdRwRSQQwD1mikrZit4SqAp1veQCOKkigMEAjg-KsSN0secO0az1NvmNSXc6Gq8fhJhGbVLdTgA9VHIPDlPZOs5obyyn1ljZdapXNaqsL3vWdu43MFiYSjLhBfRlZvK3eoy_tSKcsBZXwKdHQIq_5roFvfHZQghmgjhnTUVHqFAdE9X68R_rOs5pqqvauTBhnaK76djeZVPMOYF7aoZgvbu__s_9a9WH53M81fy9NrsHuXOuyw</recordid><startdate>20220518</startdate><enddate>20220518</enddate><creator>Qammar, Naseha Wafa</creator><creator>Orinaitė, Ugnė</creator><creator>Šiaučiūnaitė, Vaiva</creator><creator>Vainoras, Alfonsas</creator><creator>Šakalytė, Gintarė</creator><creator>Ragulskis, Minvydas</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2753-6035</orcidid><orcidid>https://orcid.org/0000-0001-9987-6325</orcidid><orcidid>https://orcid.org/0000-0002-5732-8520</orcidid><orcidid>https://orcid.org/0000-0002-3348-9717</orcidid><orcidid>https://orcid.org/0000-0002-7579-9086</orcidid></search><sort><creationdate>20220518</creationdate><title>The Complexity of the Arterial Blood Pressure Regulation during the Stress Test</title><author>Qammar, Naseha Wafa ; Orinaitė, Ugnė ; Šiaučiūnaitė, Vaiva ; Vainoras, Alfonsas ; Šakalytė, Gintarė ; Ragulskis, Minvydas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>arterial blood pressure</topic><topic>Automation</topic><topic>Blood pressure</topic><topic>cardiac intercals</topic><topic>Cardiac stress tests</topic><topic>Cardiovascular system</topic><topic>Catecholamines</topic><topic>Electrocardiography</topic><topic>Exercise</topic><topic>Heart rate</topic><topic>Human body</topic><topic>Hypertension</topic><topic>Machine learning</topic><topic>Nervous system</topic><topic>Normal distribution</topic><topic>stress test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qammar, Naseha Wafa</creatorcontrib><creatorcontrib>Orinaitė, Ugnė</creatorcontrib><creatorcontrib>Šiaučiūnaitė, Vaiva</creatorcontrib><creatorcontrib>Vainoras, Alfonsas</creatorcontrib><creatorcontrib>Šakalytė, Gintarė</creatorcontrib><creatorcontrib>Ragulskis, Minvydas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qammar, Naseha Wafa</au><au>Orinaitė, Ugnė</au><au>Šiaučiūnaitė, Vaiva</au><au>Vainoras, Alfonsas</au><au>Šakalytė, Gintarė</au><au>Ragulskis, Minvydas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Complexity of the Arterial Blood Pressure Regulation during the Stress Test</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2022-05-18</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>1256</spage><pages>1256-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years; height 178.88 ± 0.071 m; weight 80.53 ± 10.01 kg; body mass index 25.10 ± 2.06 kg/m2. Machine learning algorithms are employed to build a set of rules for the classification of the performance during the stress test. The heart rate, the JT interval, and the blood pressure readings are observed during the load and the recovery phases of the exercise. Although it is obvious that the two groups of persons will behave differently throughout the bicycle stress test, with this novel study, we are able to detect subtle variations in the rate at which these changes occur. This paper proves that these differences are measurable and substantial to detect subtle differences in the self-organization of the human cardiovascular system. It is shown that the data collected during the load phase of the stress test plays a more significant role than the data collected during the recovery phase. The data collected from the two groups of persons are approximated by Gaussian distribution. The introduced classification algorithm based on the statistical analysis and the triangle coordinate system helps to determine whether the reaction of the cardiovascular system of a new candidate is more pronounced by an increased heart rate or an increased blood pressure during the stress test. The developed approach produces valuable information about the self-organization of human cardiovascular system during a physical exercise.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35626410</pmid><doi>10.3390/diagnostics12051256</doi><orcidid>https://orcid.org/0000-0003-2753-6035</orcidid><orcidid>https://orcid.org/0000-0001-9987-6325</orcidid><orcidid>https://orcid.org/0000-0002-5732-8520</orcidid><orcidid>https://orcid.org/0000-0002-3348-9717</orcidid><orcidid>https://orcid.org/0000-0002-7579-9086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4418
ispartof Diagnostics (Basel), 2022-05, Vol.12 (5), p.1256
issn 2075-4418
2075-4418
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d18ebef0285f432bac42cac8779b92ca
source PubMed (Medline); Publicly Available Content Database
subjects arterial blood pressure
Automation
Blood pressure
cardiac intercals
Cardiac stress tests
Cardiovascular system
Catecholamines
Electrocardiography
Exercise
Heart rate
Human body
Hypertension
Machine learning
Nervous system
Normal distribution
stress test
title The Complexity of the Arterial Blood Pressure Regulation during the Stress Test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Complexity%20of%20the%20Arterial%20Blood%20Pressure%20Regulation%20during%20the%20Stress%20Test&rft.jtitle=Diagnostics%20(Basel)&rft.au=Qammar,%20Naseha%20Wafa&rft.date=2022-05-18&rft.volume=12&rft.issue=5&rft.spage=1256&rft.pages=1256-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics12051256&rft_dat=%3Cproquest_doaj_%3E2671269736%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-34975f187f866cc2a4918e1e0b03928856bc1e8e12fb846e41288eea0eef4d933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670137923&rft_id=info:pmid/35626410&rfr_iscdi=true