Loading…
The mNCP-SPI Score Predicting Risk of Severe COVID-19 among Mild-Pneumonia Patients on Admission
To predict the risk of developing severe pneumonia among mild novel coronavirus pneumonia (mNCP) patients on admission. A retrospective cohort study was conducted at three hospitals in Shanghai and Wuhan from January 2020 to February 2020. Real-time polymerasechain-reaction assays were used to detec...
Saved in:
Published in: | Infection and drug resistance 2020-01, Vol.13, p.3593-3600 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643 |
container_end_page | 3600 |
container_issue | |
container_start_page | 3593 |
container_title | Infection and drug resistance |
container_volume | 13 |
creator | Guo, Lingxi Xiong, Weining Liu, Dong Feng, Yun Wang, Peng Dong, Xuan Chen, Rong Wang, Yi Zhang, Lei Huang, Jingwen Summah, Hanssa Dwarka Lu, Fangying Xie, Yusang Lin, Huihuang Yan, Jiayang Lu, Hongzhou Zhou, Min Qu, Jieming |
description | To predict the risk of developing severe pneumonia among mild novel coronavirus pneumonia (mNCP) patients on admission.
A retrospective cohort study was conducted at three hospitals in Shanghai and Wuhan from January 2020 to February 2020. Real-time polymerasechain-reaction assays were used to detect COVID-19. A total of 529 patients diagnosed with NCP were recruited from three hospitals and classified by four severity types during hospitalization following the standards of the Chinese Diagnosis and Treatment of Pneumonia Caused by New Coronavirus Infection (eighth version). Patients were excluded if admitted by ICU on admission (n=92, on a general ward while meeting the condition of severe or critical type on admission (n=25), or there was insufficient clinical information (n=64). In sum, 348 patients with mNCP were finally included, and 68 developed severe pneumonia.
mNCP severity prognostic index values were calculated based on multivariate logistic regression: history of diabetes (OR 2.064, 95% CI 1.010-4.683;
=0.043), time from symptom onset to admission ≥7 days (OR 1.945, 95% CI 1.054-3.587;
=0.033), lymphocyte count ≤0.8 (OR 1.816, 95% CI 1.008-3.274;
=0.047), myoglobin ≥90 mg/L (OR 2.496, 95% CI 1.235-5.047;
=0.011), and D-dimer ≥0.5 mg/L (OR 2.740, 95% CI 1.395-5.380;
=0.003). This model showed a
-statistics of 0.747, with sensitivity and specificity 0.764 and 0.644, respectively, under cutoff of 165.
We designed a clinical predictive tool for risk of severe pneumonia among mNCP patients to provided guidance for medicines. Further studies are required for external validation. |
doi_str_mv | 10.2147/IDR.S263157 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1969b100b6e4d168beee069818f76a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642011037</galeid><doaj_id>oai_doaj_org_article_d1969b100b6e4d168beee069818f76a0</doaj_id><sourcerecordid>A642011037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643</originalsourceid><addsrcrecordid>eNptkt9r2zAQx83YWEvWp70Pw2AUhjPJkiXrZRDS_Qh0a2i6vWr6cU7U2VYn2YX991OarCRjEujH3ee-4k6XZS8xmpaY8neLi-vpqmQEV_xJdooxrwsmOHl6cD7JzmK8RWkQwSgvn2cnhGDMGBen2Y-bDeTd1_myWC0X-cr4APkygHVmcP06v3bxZ-6bfAX3kDzzq--LiwKLXHU-eb-41hbLHsZ0cypfqsFBP8Tc9_nMdi5G5_sX2bNGtRHO9vsk-_bxw838c3F59Wkxn10WpuJkKABpgykorahpKCeGAgOmQYvakpLoqqa1KNMCVoiKNpQhTZmlghpea0bJJFvsdK1Xt_IuuE6F39IrJx8MPqylCoMzLUiLBRMaI6QZUItZrQEAMVHjuuFMoaT1fqd1N-oOrElJBdUeiR57ereRa38vecUEqnESON8LBP9rhDjIVA0Dbat68GOUJa1SQrhMHzfJXv-D3vox9KlUW4oRROsHwT21VikB1zc-vWu2onLGaIkwRoQnavofKk0LnTO-h8Yl-1HAm4OADah22ETfjkP6uHgMvt2BJvgYAzSPxcBIbhtRpkaU-0ZM9KvD-j2yf9uO_AFqdtNj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456304881</pqid></control><display><type>article</type><title>The mNCP-SPI Score Predicting Risk of Severe COVID-19 among Mild-Pneumonia Patients on Admission</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Taylor & Francis Open Access Journals</source><source>Coronavirus Research Database</source><creator>Guo, Lingxi ; Xiong, Weining ; Liu, Dong ; Feng, Yun ; Wang, Peng ; Dong, Xuan ; Chen, Rong ; Wang, Yi ; Zhang, Lei ; Huang, Jingwen ; Summah, Hanssa Dwarka ; Lu, Fangying ; Xie, Yusang ; Lin, Huihuang ; Yan, Jiayang ; Lu, Hongzhou ; Zhou, Min ; Qu, Jieming</creator><creatorcontrib>Guo, Lingxi ; Xiong, Weining ; Liu, Dong ; Feng, Yun ; Wang, Peng ; Dong, Xuan ; Chen, Rong ; Wang, Yi ; Zhang, Lei ; Huang, Jingwen ; Summah, Hanssa Dwarka ; Lu, Fangying ; Xie, Yusang ; Lin, Huihuang ; Yan, Jiayang ; Lu, Hongzhou ; Zhou, Min ; Qu, Jieming</creatorcontrib><description>To predict the risk of developing severe pneumonia among mild novel coronavirus pneumonia (mNCP) patients on admission.
A retrospective cohort study was conducted at three hospitals in Shanghai and Wuhan from January 2020 to February 2020. Real-time polymerasechain-reaction assays were used to detect COVID-19. A total of 529 patients diagnosed with NCP were recruited from three hospitals and classified by four severity types during hospitalization following the standards of the Chinese Diagnosis and Treatment of Pneumonia Caused by New Coronavirus Infection (eighth version). Patients were excluded if admitted by ICU on admission (n=92, on a general ward while meeting the condition of severe or critical type on admission (n=25), or there was insufficient clinical information (n=64). In sum, 348 patients with mNCP were finally included, and 68 developed severe pneumonia.
mNCP severity prognostic index values were calculated based on multivariate logistic regression: history of diabetes (OR 2.064, 95% CI 1.010-4.683;
=0.043), time from symptom onset to admission ≥7 days (OR 1.945, 95% CI 1.054-3.587;
=0.033), lymphocyte count ≤0.8 (OR 1.816, 95% CI 1.008-3.274;
=0.047), myoglobin ≥90 mg/L (OR 2.496, 95% CI 1.235-5.047;
=0.011), and D-dimer ≥0.5 mg/L (OR 2.740, 95% CI 1.395-5.380;
=0.003). This model showed a
-statistics of 0.747, with sensitivity and specificity 0.764 and 0.644, respectively, under cutoff of 165.
We designed a clinical predictive tool for risk of severe pneumonia among mNCP patients to provided guidance for medicines. Further studies are required for external validation.</description><identifier>ISSN: 1178-6973</identifier><identifier>EISSN: 1178-6973</identifier><identifier>DOI: 10.2147/IDR.S263157</identifier><identifier>PMID: 33116679</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>Antibiotics ; Cardiovascular disease ; Cell number ; China ; Coronaviruses ; COVID-19 ; Development and progression ; Diabetes ; Diabetes mellitus ; Ethics ; Health aspects ; Hospital patients ; Hospitalization ; Hospitals ; Infections ; Laboratories ; Lymphocytes ; Medical care quality ; Medical schools ; Multivariate analysis ; Myoglobin ; Myoglobins ; novel coronavirus pneumonia ; Original Research ; Patients ; Pneumonia ; predicting score ; Public health ; severe pneumonia ; Variables</subject><ispartof>Infection and drug resistance, 2020-01, Vol.13, p.3593-3600</ispartof><rights>2020 Guo et al.</rights><rights>COPYRIGHT 2020 Dove Medical Press Limited</rights><rights>2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Guo et al. 2020 Guo et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643</citedby><cites>FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643</cites><orcidid>0000-0002-8308-5534 ; 0000-0002-6612-3930 ; 0000-0003-1191-8397 ; 0000-0001-8198-5240 ; 0000-0002-5233-9693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2456304881/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2456304881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33116679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Lingxi</creatorcontrib><creatorcontrib>Xiong, Weining</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Dong, Xuan</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Huang, Jingwen</creatorcontrib><creatorcontrib>Summah, Hanssa Dwarka</creatorcontrib><creatorcontrib>Lu, Fangying</creatorcontrib><creatorcontrib>Xie, Yusang</creatorcontrib><creatorcontrib>Lin, Huihuang</creatorcontrib><creatorcontrib>Yan, Jiayang</creatorcontrib><creatorcontrib>Lu, Hongzhou</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Qu, Jieming</creatorcontrib><title>The mNCP-SPI Score Predicting Risk of Severe COVID-19 among Mild-Pneumonia Patients on Admission</title><title>Infection and drug resistance</title><addtitle>Infect Drug Resist</addtitle><description>To predict the risk of developing severe pneumonia among mild novel coronavirus pneumonia (mNCP) patients on admission.
A retrospective cohort study was conducted at three hospitals in Shanghai and Wuhan from January 2020 to February 2020. Real-time polymerasechain-reaction assays were used to detect COVID-19. A total of 529 patients diagnosed with NCP were recruited from three hospitals and classified by four severity types during hospitalization following the standards of the Chinese Diagnosis and Treatment of Pneumonia Caused by New Coronavirus Infection (eighth version). Patients were excluded if admitted by ICU on admission (n=92, on a general ward while meeting the condition of severe or critical type on admission (n=25), or there was insufficient clinical information (n=64). In sum, 348 patients with mNCP were finally included, and 68 developed severe pneumonia.
mNCP severity prognostic index values were calculated based on multivariate logistic regression: history of diabetes (OR 2.064, 95% CI 1.010-4.683;
=0.043), time from symptom onset to admission ≥7 days (OR 1.945, 95% CI 1.054-3.587;
=0.033), lymphocyte count ≤0.8 (OR 1.816, 95% CI 1.008-3.274;
=0.047), myoglobin ≥90 mg/L (OR 2.496, 95% CI 1.235-5.047;
=0.011), and D-dimer ≥0.5 mg/L (OR 2.740, 95% CI 1.395-5.380;
=0.003). This model showed a
-statistics of 0.747, with sensitivity and specificity 0.764 and 0.644, respectively, under cutoff of 165.
We designed a clinical predictive tool for risk of severe pneumonia among mNCP patients to provided guidance for medicines. Further studies are required for external validation.</description><subject>Antibiotics</subject><subject>Cardiovascular disease</subject><subject>Cell number</subject><subject>China</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Ethics</subject><subject>Health aspects</subject><subject>Hospital patients</subject><subject>Hospitalization</subject><subject>Hospitals</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Lymphocytes</subject><subject>Medical care quality</subject><subject>Medical schools</subject><subject>Multivariate analysis</subject><subject>Myoglobin</subject><subject>Myoglobins</subject><subject>novel coronavirus pneumonia</subject><subject>Original Research</subject><subject>Patients</subject><subject>Pneumonia</subject><subject>predicting score</subject><subject>Public health</subject><subject>severe pneumonia</subject><subject>Variables</subject><issn>1178-6973</issn><issn>1178-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9r2zAQx83YWEvWp70Pw2AUhjPJkiXrZRDS_Qh0a2i6vWr6cU7U2VYn2YX991OarCRjEujH3ee-4k6XZS8xmpaY8neLi-vpqmQEV_xJdooxrwsmOHl6cD7JzmK8RWkQwSgvn2cnhGDMGBen2Y-bDeTd1_myWC0X-cr4APkygHVmcP06v3bxZ-6bfAX3kDzzq--LiwKLXHU-eb-41hbLHsZ0cypfqsFBP8Tc9_nMdi5G5_sX2bNGtRHO9vsk-_bxw838c3F59Wkxn10WpuJkKABpgykorahpKCeGAgOmQYvakpLoqqa1KNMCVoiKNpQhTZmlghpea0bJJFvsdK1Xt_IuuE6F39IrJx8MPqylCoMzLUiLBRMaI6QZUItZrQEAMVHjuuFMoaT1fqd1N-oOrElJBdUeiR57ereRa38vecUEqnESON8LBP9rhDjIVA0Dbat68GOUJa1SQrhMHzfJXv-D3vox9KlUW4oRROsHwT21VikB1zc-vWu2onLGaIkwRoQnavofKk0LnTO-h8Yl-1HAm4OADah22ETfjkP6uHgMvt2BJvgYAzSPxcBIbhtRpkaU-0ZM9KvD-j2yf9uO_AFqdtNj</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Guo, Lingxi</creator><creator>Xiong, Weining</creator><creator>Liu, Dong</creator><creator>Feng, Yun</creator><creator>Wang, Peng</creator><creator>Dong, Xuan</creator><creator>Chen, Rong</creator><creator>Wang, Yi</creator><creator>Zhang, Lei</creator><creator>Huang, Jingwen</creator><creator>Summah, Hanssa Dwarka</creator><creator>Lu, Fangying</creator><creator>Xie, Yusang</creator><creator>Lin, Huihuang</creator><creator>Yan, Jiayang</creator><creator>Lu, Hongzhou</creator><creator>Zhou, Min</creator><creator>Qu, Jieming</creator><general>Dove Medical Press Limited</general><general>Taylor & Francis Ltd</general><general>Dove</general><general>Dove Medical Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8308-5534</orcidid><orcidid>https://orcid.org/0000-0002-6612-3930</orcidid><orcidid>https://orcid.org/0000-0003-1191-8397</orcidid><orcidid>https://orcid.org/0000-0001-8198-5240</orcidid><orcidid>https://orcid.org/0000-0002-5233-9693</orcidid></search><sort><creationdate>20200101</creationdate><title>The mNCP-SPI Score Predicting Risk of Severe COVID-19 among Mild-Pneumonia Patients on Admission</title><author>Guo, Lingxi ; Xiong, Weining ; Liu, Dong ; Feng, Yun ; Wang, Peng ; Dong, Xuan ; Chen, Rong ; Wang, Yi ; Zhang, Lei ; Huang, Jingwen ; Summah, Hanssa Dwarka ; Lu, Fangying ; Xie, Yusang ; Lin, Huihuang ; Yan, Jiayang ; Lu, Hongzhou ; Zhou, Min ; Qu, Jieming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibiotics</topic><topic>Cardiovascular disease</topic><topic>Cell number</topic><topic>China</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Ethics</topic><topic>Health aspects</topic><topic>Hospital patients</topic><topic>Hospitalization</topic><topic>Hospitals</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Lymphocytes</topic><topic>Medical care quality</topic><topic>Medical schools</topic><topic>Multivariate analysis</topic><topic>Myoglobin</topic><topic>Myoglobins</topic><topic>novel coronavirus pneumonia</topic><topic>Original Research</topic><topic>Patients</topic><topic>Pneumonia</topic><topic>predicting score</topic><topic>Public health</topic><topic>severe pneumonia</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Lingxi</creatorcontrib><creatorcontrib>Xiong, Weining</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Dong, Xuan</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Huang, Jingwen</creatorcontrib><creatorcontrib>Summah, Hanssa Dwarka</creatorcontrib><creatorcontrib>Lu, Fangying</creatorcontrib><creatorcontrib>Xie, Yusang</creatorcontrib><creatorcontrib>Lin, Huihuang</creatorcontrib><creatorcontrib>Yan, Jiayang</creatorcontrib><creatorcontrib>Lu, Hongzhou</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Qu, Jieming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database (ProQuest)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Infection and drug resistance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Lingxi</au><au>Xiong, Weining</au><au>Liu, Dong</au><au>Feng, Yun</au><au>Wang, Peng</au><au>Dong, Xuan</au><au>Chen, Rong</au><au>Wang, Yi</au><au>Zhang, Lei</au><au>Huang, Jingwen</au><au>Summah, Hanssa Dwarka</au><au>Lu, Fangying</au><au>Xie, Yusang</au><au>Lin, Huihuang</au><au>Yan, Jiayang</au><au>Lu, Hongzhou</au><au>Zhou, Min</au><au>Qu, Jieming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mNCP-SPI Score Predicting Risk of Severe COVID-19 among Mild-Pneumonia Patients on Admission</atitle><jtitle>Infection and drug resistance</jtitle><addtitle>Infect Drug Resist</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>13</volume><spage>3593</spage><epage>3600</epage><pages>3593-3600</pages><issn>1178-6973</issn><eissn>1178-6973</eissn><abstract>To predict the risk of developing severe pneumonia among mild novel coronavirus pneumonia (mNCP) patients on admission.
A retrospective cohort study was conducted at three hospitals in Shanghai and Wuhan from January 2020 to February 2020. Real-time polymerasechain-reaction assays were used to detect COVID-19. A total of 529 patients diagnosed with NCP were recruited from three hospitals and classified by four severity types during hospitalization following the standards of the Chinese Diagnosis and Treatment of Pneumonia Caused by New Coronavirus Infection (eighth version). Patients were excluded if admitted by ICU on admission (n=92, on a general ward while meeting the condition of severe or critical type on admission (n=25), or there was insufficient clinical information (n=64). In sum, 348 patients with mNCP were finally included, and 68 developed severe pneumonia.
mNCP severity prognostic index values were calculated based on multivariate logistic regression: history of diabetes (OR 2.064, 95% CI 1.010-4.683;
=0.043), time from symptom onset to admission ≥7 days (OR 1.945, 95% CI 1.054-3.587;
=0.033), lymphocyte count ≤0.8 (OR 1.816, 95% CI 1.008-3.274;
=0.047), myoglobin ≥90 mg/L (OR 2.496, 95% CI 1.235-5.047;
=0.011), and D-dimer ≥0.5 mg/L (OR 2.740, 95% CI 1.395-5.380;
=0.003). This model showed a
-statistics of 0.747, with sensitivity and specificity 0.764 and 0.644, respectively, under cutoff of 165.
We designed a clinical predictive tool for risk of severe pneumonia among mNCP patients to provided guidance for medicines. Further studies are required for external validation.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>33116679</pmid><doi>10.2147/IDR.S263157</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8308-5534</orcidid><orcidid>https://orcid.org/0000-0002-6612-3930</orcidid><orcidid>https://orcid.org/0000-0003-1191-8397</orcidid><orcidid>https://orcid.org/0000-0001-8198-5240</orcidid><orcidid>https://orcid.org/0000-0002-5233-9693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1178-6973 |
ispartof | Infection and drug resistance, 2020-01, Vol.13, p.3593-3600 |
issn | 1178-6973 1178-6973 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d1969b100b6e4d168beee069818f76a0 |
source | Open Access: PubMed Central; Publicly Available Content Database; Taylor & Francis Open Access Journals; Coronavirus Research Database |
subjects | Antibiotics Cardiovascular disease Cell number China Coronaviruses COVID-19 Development and progression Diabetes Diabetes mellitus Ethics Health aspects Hospital patients Hospitalization Hospitals Infections Laboratories Lymphocytes Medical care quality Medical schools Multivariate analysis Myoglobin Myoglobins novel coronavirus pneumonia Original Research Patients Pneumonia predicting score Public health severe pneumonia Variables |
title | The mNCP-SPI Score Predicting Risk of Severe COVID-19 among Mild-Pneumonia Patients on Admission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mNCP-SPI%20Score%20Predicting%20Risk%20of%20Severe%20COVID-19%20among%20Mild-Pneumonia%20Patients%20on%20Admission&rft.jtitle=Infection%20and%20drug%20resistance&rft.au=Guo,%20Lingxi&rft.date=2020-01-01&rft.volume=13&rft.spage=3593&rft.epage=3600&rft.pages=3593-3600&rft.issn=1178-6973&rft.eissn=1178-6973&rft_id=info:doi/10.2147/IDR.S263157&rft_dat=%3Cgale_doaj_%3EA642011037%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-e0bc14eaba4cf473c4e6e6beb98d323b584892848ed9954f460b46d494c78b643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456304881&rft_id=info:pmid/33116679&rft_galeid=A642011037&rfr_iscdi=true |